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Comparative analyses in ethology across stimulus environments or
genetic variants often require identifying subtle variations in behav-
ioral action sequences (‘motifs’). A challenging inferential problem
lies in finding such motifs, which represent recurring sequences of
shorter, stereotyped elementary maneuvers and are manifested as
few copies of noisy patterns interspersed with other unknown se-
quences and erratic movements. Here, we propose a lexical model
of animal behavior, where we view behavior as being composed of
noisy instantiations of motif templates from an unknown dictionary.
We develop a novel, statistical physics-inspired, unsupervised algo-
rithm "BASS" to identify and segment motifs from high-throughput
behavioral data. When applied to zebrafish larvae, our lexical model
better explains than a Markov model the basic exploratory behavior
and reveals a dictionary of unusually long motifs consisting of re-
peats and mixtures of slow forward and turn bouts. We further in-
vestigated a novel aversive chemotaxis assay where fish chemotax
yet display no major differences in kinematic parameters. BASS re-
vealed that fish avoid aversive cues by implementing a conserved
transient chemotactic response consisting of sequences of fast
large-angle turns and burst swims. Our approach allows us to char-
acterize the functional significance of specific action sequences for
solving a behavioral task. BASS can be easily incorporated into ex-
isting behavioral analysis pipelines and also be used as a generic
algorithm for motif discovery in any sequential data that has a low-
dimensional embedding.
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A major challenge in ethology is to infer the behavioral1

algorithms used by animals to perform tasks necessary2

for their survival. Inference of behavioral responses in nat-3

ural environments is non-trivial when the input stimulus is4

unknown and uncontrolled, leading to an issue of unspecified5

context, and is further encumbered by stochasticity at various6

levels in the animal’s execution of the response. A statistical7

analysis of coarse-grained observables from tracked behavioral8

data may exhibit statistically significant changes induced by9

the stimulus, but inferring behavioral responses often requires10

a precisely-controlled setting. One increasingly common com-11

putational approach is to leverage recent developments in the12

automated tracking of postural dynamics (1–5). These meth-13

ods exploit clusters in low-dimensional embeddings of postural14

dynamics to describe behavior as a sequence of elementary15

maneuvers or behavioral ’syllables’ drawn from a probabilistic16

model. The resulting descriptions parallel language models,17

containing information about local dynamics in the form of a18

probabilistic syntax over individual syllables (6–15).19

While such descriptions provide useful insight into an ani-20

mal’s behavioral repertoire, the differences in behavior across21

different environments or genetic variants are often quite sub-22

tle, making comparative analyses difficult and uninterpretable.23

The key difficulty lies in that the majority of behavioral re- 24

sponses are transient and occur only a few times in the dataset. 25

By focusing on capturing short time-scale dynamics, dynamical 26

models miss low-copy-number, behaviorally relevant patterns. 27

Such long-correlated stretches are lost in the noise and are 28

difficult to pick out from a large dataset. To give a simple 29

example, consider a scenario where one is presented with a 30

control ‘behavioral’ dataset consisting of a sequence of 100,000 31

fair coin tosses, and a treatment dataset which is otherwise 32

statistically identical except for 25 sequences of 20 consecutive 33

tails placed at random locations within the sequence. By eye, 34

the sequences in the treatment dataset clearly stand out as 35

abnormal, relevant stretches. On the other hand, a Markov 36

model on heads and tails, say, when fit to the treatment data 37

may indeed show a statistically significant deviation in its 38

transition matrix from the control, but does not point to the 39

nature of the abnormal stretches or where to find them. 40

We adopt an alternative, overlapping viewpoint, where 41

we view behavior as being composed of recurring action se- 42

quences, which we call motifs, resulting in a lexical description 43

of behavior as a chain of ‘words’ independently drawn from a 44

dictionary with no attention paid to dynamics, i.e., there is 45

no syntax. Note that motifs and syllables are sometimes used 46

synonymously. To fix terminology, we define motifs as recur- 47

ring action sequences of shorter, well-defined syllables. Motifs 48

arguably contain more meaning in the context of a behavioral 49

algorithm, much like words in English (16). While inferring 50

the syntax of a hierarchical model is not impossible using 51

syllable-based models such as those used in machine transla- 52
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tion (17), such models require orders of magnitude more data53

than existing experimental paradigms can offer. Importantly,54

inferring a hierarchical structure over a set of motifs is much55

more data-efficient, particularly for smaller dictionaries. On56

the other hand, a dictionary of motifs is not usually available;57

it is unclear what fraction of an animal’s behavioral repertoire58

is composed of motifs and how this fraction changes across59

freely-behaving animals and those solving a specific task. To60

begin, motifs have to be first segmented out from data and61

fluctuations quantified before they can be used to construct62

higher-order word-based models.63

Here, we develop a novel lexical model of behavior and an64

unsupervised method (Behavioral Action Sequence Segmenta-65

tion or BASS) to discover and construct dictionaries of motifs66

from behavioral data. We assume, as is common for state-67

space models, that short time-scale postural dynamics can68

be mapped onto a set of elementary maneuvers that appear69

as clusters in a lower dimensional space, which has indeed70

been shown in a variety of systems including rodents, flies,71

worms and zebrafish larvae (8, 13, 18–20). These elementary72

maneuvers then form an ‘alphabet’. The clustered behavioral73

time series yields a soft symbolic representation as probability74

vectors over the alphabet, which is then amenable to statistical75

segmentation methods that further break it up into identified76

motifs (of arbitrary length), while taking various sources of77

noise into account.78

If elementary maneuvers are represented by symbols, one79

straightforward approach to motif discovery is to enumerate80

over-represented sequences of n symbols (n-grams). However,81

the memory and computation time required for this approach82

increases exponentially with n. Often-used compression meth-83

ods (21–23) optimize an altogether different "coding" objective,84

which do not necessarily lead to meaningful motifs; for exam-85

ple, the two-symbol word ab could be identified as a motif86

simply because a and b occur often, even if a and b occur87

next to each other purely by chance. An alternative approach,88

similar to ours, is to maintain a set of possible sequences (in89

the form of a dictionary (24) or a suffix tree (25–27)) and add90

a new motif m1m2 to this set by concatenating two existing91

motifs m1 and m2 only if they are juxtaposed more often than92

chance. The resulting model can be viewed as an infinite-order93

Markov model, where only the paths through state space that94

show non-trivial temporal dependencies are stored.95

However, the complexity of behavioral data prevents the96

direct application of the latter class of methods developed for97

bioinformatics and text processing. In these applications, one98

is presented a well-defined sequence of letters (AGTC or the99

English alphabet) and with little variability in instantiations100

of a particular word (words are rarely misspelled). We identify101

three sources of variability that impair typical methods of102

motif discovery in behavioral data: (1) Action pattern noise,103

which is the variability in instantiations of a particular motif104

template, (2) Syllable noise, i.e., the variations in observed105

output, which may lead to a syllable appearing as a similar106

one, and (3) Background variability due to rare behaviors and107

erratic movements. To make an analogy with speech learning108

(28), our task is similar to learning new words from spoken109

language (with no distinctive pauses separating the words)110

and given prior knowledge of phonology. Action pattern noise,111

in this analogy, corresponds (not exclusively) to stutters in112

speech, syllable noise to substitutions of similar phonemes (for113

b c

aabc ab ab a bc bccca

aabcc ab ab a bc bcccaa

Motif template

Motif instantiation

Observed behavioral
output

a

Fig. 1. The generative model from motifs to behavioral output. (a) Motif templates
are fixed sequences of behavioral syllables (labeled a,b and c in this example). The
observed behavioral output is generated from motif templates drawn sequentially
from a dictionary. An instantiation of a template may "mutate" by insertions (red) or
deletions (blue), which then generates the observed output as shown in panel (b). (b)
The generative process from a motif template c1c2 . . . cl to instantiation c̃1c̃2 . . . c̃l̃

to observed output y1y2 . . .yl̃. (c) The unsupervised inference procedure (BASS)
first learns a dictionary of motifs and then segments (vertical bars) the observed
behavioral output y1,y2, . . . into the most likely sequence of motifs m1,m2, . . .

from the dictionary that generated it.

example, the aspirated /ph/ and the unaspirated /p/), and 114

background noise to the utterance of unique proper nouns or 115

unusual sounds. To overcome these challenges, we generalize 116

the modeling framework in ref. (24) by introducing an addi- 117

tional two-level hierarchical model, the lower level mapping 118

observed behavioral data to a latent state space and the second 119

level introducing a model for noisy instantiations of motifs 120

(Figure 1a). Despite the model’s complexity, we show that 121

inference is tractable and motifs efficiently extracted. 122

Zebrafish is an interesting vertebrate model organism to in- 123

vestigate the emergence of behavioral action sequences. Start- 124

ing from five days post fertilization, in order to survive, ze- 125

brafish larvae actively explore their environment for food using 126

stereotypical maneuvers consisting of bouts of activity last- 127

ing few hundreds of milliseconds separated by distinct pauses 128

(13, 14, 20, 29). The small size enables the recording of numer- 129

ous larvae in parallel, leading to the collection of thousands 130

of swim bouts in a few minutes. Using our lexical approach, 131

we first investigate the behavioral action sequences, i.e., the 132

stereotyped sequences of bout types that zebrafish larvae use 133

to spontaneously explore their environment. Next, we take 134

advantage of a novel chemotaxis assay in which larvae navigate 135

in arenas with gradients of acidic pH and effectively avoid 136

acidic regions. The behavioral response that results in aversive 137

chemotaxis is unknown. Moreover, the classical examination 138

of global kinematic parameters reveals only minor differences, 139

which makes identifying the chemotactic response challeng- 140

ing and thus makes for an appropriate benchmark for our 141

approach. 142

We first develop the lexical model and the motif identifica- 143

tion algorithm, BASS. We apply the algorithm to synthetic 144

data and to datasets obtained from freely exploring and chemo- 145

tactic zebrafish larvae. A comparison of the dictionaries in 146
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Fig. 2. BASS accurately identifies and segments motifs in noisy, synthetic data: (a) The seven clusters from which the two-dimensional data (along y1, y2) is drawn. (b)
The true probabilities of the motifs (red dots) and probabilities estimated (blue dots) by our algorithm showing successful reconstruction of the dictionary. The crosses are
low-probability motifs not identified by the algorithm (see main text). (c) A snippet of the raw data sequence and the most likely partitioning into motifs found by the algorithm.
The vertical bars delineate two successive motifs. The black arrows mark two instantiations of the same length-five motif. (d) The difference in the negative log-likelihood per
symbol after convergence when the true dictionary is unknown (F ) and known (Fmin). Action pattern noise εp and syllable noise µ are successfully integrated out with larger
datasets. Top: µ = 3, pd = 0.5, Bottom: εp = 0.15, pd = 0.5. Errors bars are s.e.m.

the two environments is then made to identify the sequences147

that larvae use to chemotax.148

Results149

A lexical model of animal behavior. Much like language, we150

assume the behavior of an animal in a particular environment151

can be described by a sequence of motifs drawn from a dic-152

tionary D, where each motif is a string of arbitrary length153

containing characters from an alphabet. Motifs are to be154

considered as templates for the generation of action sequences.155

Each of the K characters (which represent behavioral syllables)156

in the alphabet corresponds to the unique label of one of the157

K soft clusters that define the elementary maneuvers, usually158

defined in a lower dimensional embedding of postural space.159

The character likelihood function q(y|c) specifies the proba-160

bility of observing a maneuver y corresponding to the label c.161

The implicit assumption here is the existence of well-defined162

elementary maneuvers; we may relax this assumption and163

instead consider clustering as a tiling of postural space, which164

would manifest as additional noise and a larger alphabet. We165

do not address the details of finding an appropriate clustering166

scheme, which is often non-trivial; we refer to reviews on the167

topic (3–5).168

Behavior is generated from motif templates, which are169

sequentially sampled independently and identically from a dis-170

tribution {pm} over the motifs in the dictionary and individual171

characters (Figure 1a). The independence of successive motifs172

arises from the lack of syntax in our model. The inclusion173

of individual characters accounts for movements that are not174

part of any motif, for instance, rare behaviors and erratic175

movements. These movements constitute background noise176

that impair motif identification since a motif m = c1c2 . . . cl is177

detectable only if its likelihood is comparable to its constituent178

characters, pm &
∏
i
pci . Given a sequence of motifs, the data179

is generated from each template m according to the motif180

likelihood function Q(.|m) defined below, which is a central 181

element of the model. 182

The probability, Q(Yα|mα), of an observed output pat- 183

tern Yα = y1y2 . . .yl̃ given a motif template mα = c1c2 . . . cl 184

(Figure 1b) defines the behavioral output generated by mα. 185

A motif template can be viewed as the averaged trajectory 186

of a stochastic dynamical system traversing through a state 187

space. We then introduce a model for ’pattern noise’, which 188

corresponds to one where in a particular realization, the tra- 189

jectory spends a longer or shorter duration at certain regions 190

of state space, but does not deviate into distant regions of 191

state space. In particular, in each instantiation, mα ‘mutates’ 192

to m̃ = c̃1c̃2 . . . c̃l̃ with probability P (m̃|mα). The output 193

yi is drawn independently for each character in the mutated 194

sequence from q(yi|c̃i). To quantify pattern noise, we fix the 195

probability of error per character that results either in the 196

deletion or duplication of that symbol. Note that syllable noise 197

is implicitly incorporated in the character likelihood, q(y|c), 198

and is determined by the discriminability of neighboring states. 199

We derive a recursive equation for the efficient calculation of 200

Q(Yα|mα) (see SI Appendix). 201

Performing inference on this model requires constructing 202

the dictionary D as well as estimating the motif probabilities 203

{pm}. To build our dictionary, we use an iterative procedure 204

generalized from ref. (24) to our latent space model, where 205

we start from a dictionary with only single characters and 206

progressively add words based on how often smaller sub-words 207

occur next to each other. In particular, we cycle between: 208

(1) estimating {pm} using maximum likelihood estimation 209

(MLE), (2) expanding D if certain pairs of motifs occur next 210

to each other more often than you would expect from {pm}, 211

(3) truncate shorter motifs from D that are "explained away" 212

by the addition of the longer motifs into the dictionary. We 213

briefly expand on these three steps; see SI Appendix for further 214

details. 215
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Fig. 3. Analysis of larval zebrafish behavior in exploratory and aversive environments. (a) Overview of the analysis pipeline. θ is the tail angle. (b) A time series of the tail angle
showing the discrete nature of bouts. The corresponding speed, change in heading and the tail length (summed absolute amplitude of the tail angle) for each of the bouts are
shown. (c) Samples of the seven bout types identified using a Gaussian Mixture Model. The green and red dots correspond to the head position at the beginning and end of the
bout. Below each sample, the average tail angle is also shown in solid color with 200 trajectories shown in grey.

Given a behavioral dataset Y = y1y2 . . .yL, the sequence
of motif templates that generate it are unknown. For example,
if L = 3, we have Y = y1y2y3, whose likelihood is obtained
by summing over all possible ways the dataset can be parti-
tioned: Q(y1)Q(y2)Q(y3) +Q(y1)Q(y2y3) +Q(y1y2)Q(y3) +
Q(y1y2y3), where each marginal probability factor in each
term is from an instantiation of a particular motif template.
In general, the likelihood of Y under our generative model
is the sum over all possible partitionings {π} of the dataset
(of which there are 2L−1) into observed data sequences {Y π

α },
weighted by the likelihood of each partitioning:

P (Y ; {pm}) =
∑
π

N(π)∏
α=1

Q (Y π
α ) , [1]

where the marginal probability is Q(Y π
α ) =

∑
m
Q(Y π

α |m)pm

and N(π) is the total number of templates in partition π. We
show (SI Appendix) that the MLE for pm satisfies the implicit
equation

p∗
m ∝

∑
π

N(π)∑
α′=1

p (m|Y π
α′ )

N(π)∏
α=1

Q (Y π
α ) , [2]

where p (m|Y π
α ) is the posterior probability of m given the216

data and the pre-factor is determined from normalization. The217

sum over the posterior probabilities can be interpreted as an218

effective number of counts of m in the partition π; Eq. (2) can219

then be re-cast as p∗
m = 〈Nm〉/N̄ , where 〈Nm〉 is the expected220

number of counts of m over the ensemble of partitions and221

N̄ =
∑

m′〈Nm′〉 is the average number of partitions.222

Given the large sum in Eq. (2) and the hierarchical struc-223

ture of the model, it is rather surprising that the MLE can be224

performed efficiently. To compute p∗
m, it is useful to define the225

free energy, F ≡ − lnP (Y ; {pm}), which is to be minimized.226

The gradients of F can be efficiently calculated using dynamic227

programming methods (SI Appendix), which allows for compu-228

tation of p∗
m using standard gradient descent methods. Note229

that the number of counts is then 〈Nm〉 = −pm∂mF . New230

motifs are added to the dictionary if they occur more often231

than expected by random concatenations of motifs already in232

the dictionary. The probability of a new motif m being gener- 233

ated through all possible concatenations of smaller motifs in 234

the dictionary, ζ(m), is compared to the empirical probability 235

of m, −ζ(m)∂mF/N̄ . A standard likelihood ratio test yields 236

a p-value and pairs below a p threshold (10−3) are added to 237

the dictionary. Motifs which have low counts or which are 238

similar to other motifs are discarded. 239

An implementation of BASS is publicly available (30). 240

An illustration on synthetic data. To illustrate the generative 241

process and the effectiveness of the method in identifying 242

and segmenting motifs, we first apply it to a synthetically 243

generated dataset. We assume individual data points are two- 244

dimensional (representing a lower-dimensional embedding of 245

postural dynamics) and are drawn from 7 distinct states (which 246

make up the characters in our alphabet) with a Gaussian 247

emission function as shown in Figure 2a. A dictionary of 50 248

motifs is constructed such that each motif has a mean length 249

of five. Given the generated dictionary, the probability of each 250

motif, pm, is drawn and scaled with a parameter 1− εb, where 251

εb is the fraction of the dataset that is made up of individual 252

characters. We use εb as a measure of ‘background noise’. 253

Sequential data is sampled according to the lexical model, 254

with εp as a measure of action pattern noise and syllable noise 255

µ, defined as the distance between neighboring clusters (Figure 256

2a). In the sample shown, we use L = 40000, εp = 0, εb = 257

0.5, µ = 3. 258

On this dataset, the algorithm builds a dictionary contain- 259

ing 44 motifs with 11 false negatives and 6 false positives. Of 260

the 11 false negatives (crosses in Figure 2b), 8 occur fewer 261

than 25 times in the entire dataset. The three other false 262

negatives (632, 631, 421325, see Figure 2a for cluster labels) 263

were in fact closely related to the three highest probability 264

false positives (32,31,421335). The estimated probabilities 265

of the true positive motifs match very well with their true 266

probabilities (Figure 2b) despite significant background and 267

syllable noise. A snippet of the raw data is shown in Figure 268

2c along with the most likely partitioning into motifs from the 269

learned dictionary (SI Appendix). With larger datasets, the 270

method robustly integrates out fluctuations due to significant 271
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action pattern and syllable noise εp and µ (Figure 2d). BASS272

found no motifs in shuffled data, as expected.273

We now apply BASS to larval zebrafish behavior in ex-274

ploratory (pH neutral) and aversive (acidic) chemotaxis assays.275

An outline of our analysis pipeline is shown in Figure 3a.276

A dictionary for freely exploring zebrafish larvae. Zebrafish277

larvae swim in short punctuated bouts (duration mean ± s.d278

= 150 ± 50 ms) separated by longer periods of rest (mean279

± s.d = 700 ± 500 ms) (Figure 3b). Larvae explore their280

environment by performing mainly slow bouts occurring as281

forward swims and routine turns, often by repeating turns in282

the same direction (31), and rarely exhibit fast bouts such as283

burst swims or escapes (13, 20). We collected a dataset of284

≈ 85000 bouts from exploring fish (≈ 180 fish) swimming in285

an elongated well geometry.286

A single bout is well-characterized by the fish’s tail move-287

ment and other kinematic variables such as average speed and288

change in heading. From raw tracking data (SI Appendix),289

we use a six-dimensional parameterization y for each bout,290

which includes the speed, the change in heading, the tail length291

(summed absolute amplitude of the tail angle) and the first292

three principal components of the tail angle over time (SI293

Appendix). Based on this parameterization, bouts were cat-294

egorized into different bout types using a Gaussian Mixture295

Model (GMM). A GMM yields the likelihood function, q(y|c),296

for each category c, which serves as a statistical description297

of each category in terms of the means and covariances of the298

six variables. We clustered bouts into seven categories (Figure299

3c, SI Movie S1,S2), which correspond to two forward swims300

of different speeds (f, slow and F, fast), three turns based on301

the magnitude of change in heading (t,T and L, increasing302

angle), bursts (b) and an other (O) category. The O category303

contained a variety of different bouts that did not clearly fall304

into one class; these included O-bends, long turns and bursts,305

and improperly tracked bouts. The categories are not sharply306

delineated; this is not an issue for the BASS algorithm since307

variability in y is implicitly taken into account via q(y|c) as308

noted before.309

Typical bout types are displayed in Figure 3c. Compared to310

previous categorizations performed on spontaneous exploration311

(13, 14, 29), our categories (except O) likely correspond to312

sub-divisions of forward swims, routine turns and burst swims.313

The seven categories make up the alphabet of our generative314

model. Sequences of consecutive bouts for each fish (∼600315

bouts per fish) served as input to BASS. A coarse exploration of316

the pattern noise parameter εp and the probability of insertion317

pd using a held-out dataset yielded εp = 0.1 and pd = 0.2,318

which were used for the rest of our analysis. While these319

numbers suggest noisy motif instantiation and a bias towards320

insertions (i.e., repeats), precise estimates of these parameters321

require cross-validation from independent methods.322

The algorithm converged to a dictionary consisting of 66323

motifs (with similar results across trials and subsamples). A324

subset of these motifs are shown in Table 1 (see also Table325

S1). In Figure 4a,b, a sample sequence of bouts segmented326

into a sequence of motifs is presented.327

The dictionary has several surprising features. A significant328

fraction (∼ 74%) of the dataset was made of motifs. Motifs329

as large as 14 bouts were found (which may further expand330

in a particular realization due to insertions). In particular,331

f repeated 14 times occurred more than 500 times. While332

Table 1. Motifs over-represented in the exploratory dataset.

Motifs − log10 p Observed Expected
ffffffffff >300 1366 387
ffffffffffffff >300 510 50
fffffff 208.01 3234 1797
ffff 42.33 9544 8327
FFFFFFF 28.23 311 153
fffffftf 27.64 497 290
fftfffff 25.07 495 297
fftfff 22.72 1125 824
fftff 21.12 1745 1377
fftf 18.5 2724 2289
ftf 13.96 4337 3859
TfT 11.12 722 554
FFFF 7.94 1428 1224
TfTf 7.28 346 254
tttt 6.7 256 181
TTTT 5.06 160 110
bb 3.87 924 1044
bbbb 3.21 115 82
FbFb 2.19 99 74

A subset of motifs occur (‘Observed’ column) more often than
predicted by a first-order Markov model (the ‘Expected’ column). The
p-value is obtained using a likelihood ratio test. See also Table S1.

this may be explained by the large fraction of f, repeats were 333

also found for T, F and b. Overall, the most enriched and 334

common motifs correspond to repetitions of the same bout 335

type, and typically occur 2-14 times in a row. Motifs containing 336

mixtures of bouts included typically 2 different bout types. 337

The f, t, T bout types typically correspond to the slow regime 338

of locomotion, F, b and O belong to the fast regime (13, 20). 339

Notably, throughout the list of enriched motifs, all bouts 340

forming a particular motif belonged either to low speed or to 341

high speed, but not a mixture of the two. 342

To quantify how unusual these sequences were under a 343

Markov model, we compared the observed occurrence of the 344

identified motifs to those predicted from the best-fit Hidden 345

Markov Model (HMM). Our lexical model yielded a better 346

fit compared to an HMM (difference in held-out free energy 347

per bout of 0.12), and a significant portion of motifs deviated 348

from Markovianity (Tables 1,S1). The non-Markovianity likely 349

arises from two sources: First, while long repeats of the same 350

bout type occur often, the distribution of the number of repeats 351

has a heavy tail and decays much slower than a geometric 352

distribution. Second, sequences with mixtures of two bout 353

types such as TfTf and fftf are common; while the repeats 354

emphasize (say) f→f transitions, the motifs with mixtures 355

of bout types on the other hand emphasize f→t transitions, 356

creating a tension between the two in a purely Markovian 357

picture. 358

To verify that the long chain of repeats were not an arti- 359

fact due to our elongated well geometry, we applied a similar 360

pipeline of bout categorization and motif identification on a 361

previously published dataset (13) (see SI Appendix, Figure 362

S2). The dataset consists of ≈120,000 bouts (23 fish) obtained 363

from fish freely swimming in a square well (of side ∼25mm) 364

under varying light intensities. Notably, the resulting dic- 365

tionary also displays long chains of repeats and significant 366

non-Markovianity albeit with a heavier emphasis on turns 367

compared to forward swims (Table S2). Mixtures of turns and 368
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slow forward swims (ffTf, TfTf ), as well as fast forward and369

burst swims (FbFb, bbFb) are also present in this dictionary,370

while mixtures of slow bouts (forward swims or turns) and371

fast bouts (forward or burst swims) are conspicuously absent372

in both dictionaries.373

Fish chemotax away from acidic pH using conserved se-374

quences of fast bursts and large avoidance turns. Recent375

studies have investigated how zebrafish respond to the acute ap-376

plication of aversive or appetitive chemicals in the surrounding377

water (32–34). However, the behavioral responses of freely-378

swimming zebrafish larvae navigating in chemical gradients379

of aversive or appetitive cues have not yet been investigated.380

Acid was applied to the two ends of the arena forming a sharp381

gradient (SI Appendix); diffusive transport at the time scale of382

the experiment (ten minutes) is at most 1cm and therefore is383

confined to the ends. Zebrafish larvae successfully performed384

chemotaxis and avoided the two extremities (Figure 5a), yet385

displayed only minor differences in kinematic parameters typ-386

ically used in analyses (Figure 5b). The over-representation387

of certain bout categories shown in Figure 5c suggests that388

fish perform more burst b, and fast turns T and O bouts in389

response to the aversive gradient. However, the sequence of390

actions the fish takes in order to chemotax is unknown.391

We implemented a comparative approach of finding con-392

served sequences of actions that are highly over-represented393

in the aversive environment compared to exploration. We394

applied the BASS algorithm to the dataset from fish in the395

aversive environment (∼66,000 bouts from ∼100 fish). The396

resulting dictionary of motifs contained a total of 81 motifs,397

slightly larger than the one obtained from exploration (Table398

S3). The two dictionaries contain broad similarities: both399

contain long repeats of the same bout type and mixtures of t400

and f, yet contain important differences, particularly in the401

over-representation of mixtures of b,F and O,b in the aversive402

environment.403

Table 2. Motifs consistently over-represented in the aversive chemo-
taxis assay.

Motifs − log10 p 〈Nm〉aver 〈Nm〉explo

fTff 90.84 101 5
OO 66.63 111 11
bb 55.84 210 55
bOOb 46.06 63 5
Ob 35.74 135 36
bO 34.6 140 39
bFbb 24.96 49 6
Obbb 24.07 56 9

We examined over-represented sequences by comparing the 404

relative occurrences of motifs in the exploratory and aversive 405

environments. The two dictionaries were combined to obtain 406

a total of 103 unique motifs and the expected number of 407

occurrences of each motif, 〈Nm〉, for the two environments. 408

Intuitively, 〈Nm〉 is the number of times a motif occurs after 409

appropriately discounting its occurrences within a longer motif. 410

We use − log10 p as a measure of over-representation, where 411

p is obtained from a likelihood ratio test on 〈Nm〉 in the 412

two environments. To calibrate this score, we first split the 413

exploratory dataset into halves and computed the − log10 p 414

for each motif; the threshold 15 was chosen for a false positive 415

rate of 10%. To ensure that sequences from a few abnormal 416

fish did not dominate our comparison, we sub-sampled our 417

dataset from the aversive environment to 80% its size ten times, 418

performed the comparison for each sub-sample, and chose only 419

those motifs above threshold in all ten sub-samplings. 420

Table 2 shows the eight over-represented motifs conserved 421

across fish. All motifs except one (fTff ) are mixtures of b 422

and O. The bouts from the selected motifs (except fTff ) are 423

significantly over-represented close to the aversive gradient 424

compared to the rest of the bouts in the aversive environment 425

(Figure 6a), though no such selection was explicitly imposed 426
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a priori in our analysis. To verify that these motifs were427

indeed the ones involved in aversive chemotaxis, we computed428

the distance per bout the fish travels in the direction down429

the aversive gradient for bouts within motifs flagged as over-430

represented and the rest of the bouts. Figure 6b shows a highly431

significant bias for the over-represented bouts for swimming432

down the gradient. Strikingly, when bouts from the flagged433

sequences that begin at the two extreme quarters of the well434

excluding fTff are considered, the bias greatly increases, even435

beyond the typical length-wise distance travelled per bout,436

indicating that these bouts are triggered by the sharp acidic437

gradient and are almost exclusively aimed down the gradient.438

In contrast, the motif fTff, which was also reliably observed439

across fish, was not directed away from the aversive gradients440

nor did it preferentially occur close to the gradient, suggesting441

that fTff is induced by the global acidification of the swim442

arena but not as a direct response to the acidic gradient (see443

SI Movie S3 for a sample of the motif fTff ).444

Further examination of the bouts from the b and O cate-445

gories implicated in chemotaxis showed that bouts from both446

categories were significantly longer and the fish swam faster447

compared to the unflagged bouts (Figure 6c). Inspection of448

the tail movements from this subset of O bouts showed that449

these bouts typically consisted of a large-angle avoidance turn450

followed by a long burst swim (see Figure 6d for examples).451

The induced sequences of fast bouts composed of b and O near452

the edges of gradient are distinct from the recently described453

slow avoidance response to CO2 (32). The previous report of454

a lack of behavioral response to HCl pH=4.5 ((32)) suggests455

that b and O may be elicited for more acidic pH.456

Discussion457

In this study, we present a lexical model of animal behavior,458

where we view observed behavior as a composition of recur-459

ring motif templates drawn from a dictionary. We develop460

the BASS algorithm for performing inference on this model, 461

which ultimately yields a dictionary of motifs that the ani- 462

mal performs in its designated environment. Applying the 463

method on data from exploring zebrafish larvae revealed a 464

long time-scale organization of bout sequences that cannot 465

be explained in a Markovian model on single bouts. In an 466

aversive chemotaxis task, we identified conserved sequences of 467

bouts that the fish employ to escape an aversive environment. 468

We argue that our model yields complementary insight to 469

traditional dynamical models, and is better suited for compar- 470

ative behavioral analyses, particularly for comparisons across 471

animals in similar environments and closely related genetic 472

variants. While the generative model of independent motifs 473

is perhaps the simplest one, it is rather notable that it fits 474

better to our behavioral data than a syllable-based Markov 475

model with a similar number of parameters, the latter often 476

used to depict quantitative ethograms. Indeed, in his seminal 477

paper, Lashley (16, 35) rejects the reflex chain theory, which 478

posits, in modern terminology, a first-order Markov model for 479

the dynamics of movements in favor of a model based on noisy 480

motifs. 481

Our model generalizes past work on motif discovery from 482

bioinformatics, machine learning and time series analysis by 483

incorporating two important generative processes crucial for 484

behavioral modeling that were not modeled previously: el- 485

evating motif templates to latent variables and introducing 486

a data-generating process for elementary maneuvers. This 487

generalization is necessary to take into account the significant 488

variability in behavioral data, where clusters in postural space 489

are not always well-defined and erratic movements are not 490

uncommon. It should be noted that the generative process 491

for motif templates can also be viewed as a particular hidden 492

Markov model, where the |D|+ 1 hidden states at the topmost 493

level are the motifs in the dictionary and the ‘background’. 494

In this picture, the full generative model has three levels of 495

hierarchy, which we have not explicitly represented for con- 496
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ciseness. Several extensions of the model are possible. Prior497

knowledge can be easily applied. For instance, priors on the498

distributions of motif lengths or the distribution of frequencies499

can be introduced by weighting different partitions or a Dirich-500

let prior on the probabilities, respectively. In both cases, an501

MLE equation (or a MAP estimate in the latter case) similar502

to Eq. (2) can be derived. More complex, hierarchical models503

over motifs may be learned by noticing that the Markovian504

structure of the partitioning is compatible with structured505

variational approximations (36). Further structure can be506

introduced into the ‘background’, which we have assumed is507

made of independently drawn characters, similar to those used508

in bioinformatics (37).509

Importantly, BASS receives no explicit information about510

the stimulus experienced by the animal; the extracted motifs511

therefore contain no information about the precise stimulus-512

response map of the animal, but may reveal relevant qualitative513

aspects of the animal’s behavior. For example, BASS may514

discover the surge-and-cast motion of a male moth searching515

for a female (38) or the spiraling of a soaring bird (39) with516

no reference to what stimulus triggers those responses.517

In the same spirit, we show here that during chemotaxis,518

freely-swimming zebrafish larvae in a gradient of aversive519

cues exhibit conserved sequences of 2-4 fast bouts mixing520

burst and large-angle avoidance turns to swim away from521

the aversive environment. Notably, these sequences make522

up only a small fraction of the dataset (∼ 0.2%), yet are523

successfully captured in our analysis. Further, we found that524

zebrafish larvae exploring either a rectangular arena (this525

study) or confined square arenas (13) repeat specific bout526

types, particularly forward and turn swims respectively, for527

∼3-8 iterations. This observation is consistent with prior528

observations of repetition of turns in freely swimming larvae529

(31). The discovery of highly-specific sequences of either slow530

forward or turn bouts suggests that the descending command531

signals sent to the spinal cord underlying forward bouts (40) 532

or turns (41) is maintained over tens of seconds, possibly 533

via sustained inputs to reticulospinal neurons or via sensory 534

feedback, and may have important implications for foraging. 535

BASS can be easily incorporated into existing behavioral 536

analyses pipelines alongside the expanding repertoire of meth- 537

ods for unsupervised behavioral clustering (1–5). In its current 538

form, our implementation can handle datasets of size . 300,000 539

bouts and dictionaries of size . 500, beyond which approxima- 540

tions for scalable inference have to be developed. A discussion 541

on the statistical power lent by this method for comparative 542

analyses is necessary, but is beyond the scope of this work; such 543

an analysis is non-trivial due to individual-to-individual vari- 544

ability and other environmental factors. We further highlight 545

the connection between behavioral modeling and genomics, 546

where a wealth of algorithms have been developed. Exploiting 547

this connection may lead to a fruitful exchange of techniques 548

between the two seemingly disparate fields. Finally, we re- 549

mark that our method is an addition to a rapidly enlarging 550

computational toolkit for extracting mechanistic answers to 551

behavioral questions. 552

Materials and Methods 553

The code for BASS and the scripts used to reproduce the figures are 554

publicly available (30). The repository includes the six-dimensional 555

data used for bout categorization and BASS analysis. Due to its 556

large size, the raw tracking data has not been uploaded and is 557

available at request. 558
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