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ScienceDirect
The investigation of mechanosensory feedback to locomotion

has been hindered by the challenge of recording neurons in

motion. Genetic accessibility and optical transparency of

zebrafish larvae provide means to revisit this question.

Glutamatergic Rohon-Beard (RB) and GABAergic CSF-

contacting neurons (CSF-cNs) are spinal mechanosensory

neurons. Recent studies combining bioluminescence, silencing

and optogenetic activation show that mechanosensory

neurons enhance speed and stabilize posture during

locomotion. RB neurons can modulate speed by projecting

onto glutamatergic premotor V2a interneurons during fast

swimming, while CSF-cNs inhibit V0-v interneurons sustaining

slow swimming. Sensory gating, either through inhibition of

sensory interneurons (CoPA) or though the direct inhibition of

primary motor neurons by CSF-cNs, mediates postural control.

Advanced optical methods have shed light on the dynamics of

sensorimotor integration during active locomotion unraveling

implications for translational research.
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Introduction
In humans, it is a well-known clinical fact that the loss of

proprioception, that is, the sense of position of the joints,

results in gait imbalance and an inability to walk properly,

a condition termed ‘proprioceptive ataxia’. Although

oscillatory activity of motor neurons during locomotion

is generated by spinal microcircuits and does not need

sensory afferents, cutaneous and proprioceptive feedback

can critically modulate ongoing locomotion [1]. In cats for
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instance, dynamic sensorimotor interactions adapt the

locomotor pattern to the environment in a state and

phase-dependent manner, depending on when these

inputs occur within the step cycle [2]. Recent evidence

from rodents indicate that a loss of proprioceptive feed-

back in animals lacking muscle spindles (group Ia/II

afferents) results in degradation of joints coordination

and flexor/extensor alternation [3].

The mechanisms and neuronal basis underlying the

effects of mechanosensory feedback during active loco-

motion are not well understood. Recent advances in

genetic targeting of populations of neurons within the

spinal cord have allowed the dissection of spinal sensori-

motor microcircuits at the cellular level. Genetic targeting

of Gad2+ inhibitory premotor interneurons in mice

showed that these interneurons were involved in suppres-

sing oscillations during smooth reaching movements [4].

Similarly, selective ablation and activation of a subgroup

of Chx10+ V2a interneurons in the cervical spinal cord of

rodents demonstrated that they were part of a cerebellar-

motor loop ensuring effective reaching [5]. In addition to

proprioceptive sensorimotor circuits, the recent genetic

targeting of cutaneous afferents responsible for light

touch via the receptor ROR-alpha confirmed their role

in corrective movements during ongoing locomotion [6].

In the last ten years, genetic targeting of sensory afferents

allowed their electrophysiological characterization and

selective manipulation during active locomotion. None-

theless, probing the recruitment of mechanosensory feed-

back during ongoing locomotion in vivo remains a tech-

nical challenge. In mammalian species, the perturbation

and recording of targeted neuronal populations within the

spinal cord during ongoing locomotion is a daunting task.

In this regard, the zebrafish larva offers several advantages

such as: genetic amenability, optical transparency, and a

relatively simple, stereotyped and quantifiable locomotor

behavior. In this review, we will discuss recent in vivo
investigations of mechanosensory feedback during ongo-

ing locomotion in zebrafish larvae.

Quantitative analysis of behavior in zebrafish
larvae
Animal behavior is remarkably versatile in all species. Yet,

the locomotor repertoire of the zebrafish larva is relatively

stereotyped [7�], with less than a dozen possible catego-

ries of maneuvers including ‘slow swimming’, ‘fast

swimming’, ‘prey capture’ and ‘escape response’ [8]. This

limited repertoire allows high throughput quantitative
www.sciencedirect.com
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analysis of tail kinematics during active locomotion of

freely swimming animals [9]. On the other side, fictive

locomotion patterns, obtained from electrophysiological

ventral nerve root recordings, provide a quantitative

measure of motor neuron recruitment when sensory feed-

back is absent [10]. In response to aversive stimuli (audi-

tory, visual, chemo-sensory or mechano-sensory), the

zebrafish larva’s escape is a stereotyped motion away

from danger. Similar escape responses have been

described in many fish species and in Xenopus tadpoles

[11]. The escape response of 5–9 days post-fertilization

(dpf) zebrafish larva typically consists of an initial fast ‘C-

bend’ followed by a counter bend and a subsequent swim

of progressively decreasing tail beat frequency [8]. There-

fore, the escape response can be separated between an

initial fast swimming component (tail beat frequency

above 30 Hz) followed by a slow swimming component

(tail beat frequency below 30 Hz) [12].

A large body of work in the last decade has identified that

even so-called reflexes involve distributed networks in

the brain and spinal cord [13,14]. In the hindbrain,

supraspinal control of the escape response in zebrafish

and other teleost fishes consists of an array of 300 reti-

culospinal neurons including the ‘Mauthner cells’ and

their homologs [15]. Mauthner cells receive sensory

inputs from visual, vestibular and auditory afferents

and project to contralateral spinal motor neurons via a

large myelinated descending axon. In zebrafish, escape

responses can be triggered by mechanical stimuli to the

head or to the tail, auditory stimuli [16], looming visual

stimuli [17,18] as well as chemosensory stimuli [19].

Ablation and calcium imaging studies showed that these

different sensory modalities differentially recruited

Mauthner cells or their homologs, leading to escapes

with different delays and possible subsequent kinemat-

ics [7�,16,20]. In the spinal cord, primary and secondary

motor neurons are recruited by reticulospinal neurons to

initiate the escape. Once the escape response is trig-

gered, premotor interneurons can modulate the kine-

matics of locomotion by forming modular microcircuits

that are recruited as a function of speed [21]. Further

downstream, motor neurons are organized following the

size principle (Heinemann 1960s). Primary motor neu-

rons are located dorsally and innervate fast muscles.

Receiving direct inputs from Mauthner cells, these neu-

rons are responsible for the initial large amplitude C-

bend and subsequent fast swim (30–100 Hz). In contrast,

secondary motor neurons are located more ventrally and

drive swimming at slower frequencies (10–30 Hz) [22].

Premotor interneurons recruited at distinct (low or high)

locomotor frequencies are characterized by distinct

morphological, physiological and genetic properties.

For example, Chx10+ glutamatergic V2a interneurons

recruited at high locomotor frequencies are located

dorsally. On the other hand, glutamatergic interneurons

recruited at low frequencies include ventral V2a
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interneurons and glutamatergic V0-v interneurons

expressing the dbx1b transcription factor [23].

Multiple elements can modulate escape kinematics. First,

the efficiency of the initial recruitment of primary motor

neurons on one side during the C-bend is enhanced

through inhibitory commissural interneurons (termed

CoLo for ‘commissural local’ in the zebrafish larva), which

provide monosynaptic inhibition onto contralateral pri-

mary motor neurons at each segment [24,25]. In addition,

there is evidence for a spinal circuit involving endocan-

nabinoids that silence the slow module during the initial

fast swimming [26]. The well-studied and relatively sim-

ple neuronal circuit underlying the escape response pro-

vides a great model to tackle questions such as: what are

the mechanosensory inputs to the escape circuit, and how

do timed mechanosensory inputs modulate motor output?

Mechanosensory feedback enhances speed
We found multiple lines of evidence that mechanosen-

sory feedback originating from diverse sensory cell types

contribute to speed enhancement.

Glutamatergic Rohon-Beard neurons

Rohon-Beard (RB) neurons are large glutamatergic sen-

sory neurons located in the dorsal spinal cord, appearing

as early as 1 day post fertilization (dpf) [27]. These cells

were long thought to be promptly replaced by dorsal root

ganglions (Figure 1), even though many remain past the

first week of development (Dr Wyart, unpublished obser-

vation). Many studies have demonstrated, in zebrafish

and Xenopus, that RB neurons are mechanosensitive neu-

rons responding to light touch with either a single or few

action potentials [28,29��]. In zebrafish larvae, RB neu-

rons synapse onto glutamatergic CoPA (for ‘commissural

primary ascending’) interneurons, which in turn project to

V2a interneurons [30]. Starting during embryogenesis

(21 hours post-fertilization), a simple motor behavior con-

sisting in a contralateral coiling of the trunk, referred to as

a ‘touch response’, can be triggered by a mechanical

stimulus to the tail. Using transection experiments, Pietri

et al. showed that touch responses in zebrafish embryos

relied on an intraspinal loop involving RB and CoPAs,

similar to the cutaneous reflex described in Xenopus [31].

Interestingly, in 24 hour post fertilization (hpf) zebrafish

larvae, optogenetic stimulation of a single RB neuron

which elicits a single spike, is sufficient to trigger a full

escape [32]. This observation suggests that at early stages

of development, spinal mechanosensory neurons can

recruit larger networks within the spinal cord, possibly

involving CoPAs and V2a interneurons and driving the

escape behavior. Apart from triggering escape or touch

responses, is there a role for mechanosensory neurons in

modulating ongoing locomotion?

Taking advantage of a bioluminescent reporter GFP-

Aequorin, Knafo et al. monitored the activity of spinal
Current Opinion in Neurobiology 2018, 52:48–53
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Figure 1
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Circuits underlying mechanosensory feedback in the zebrafish spinal cord.
motor neurons in moving zebrafish larvae. The authors

compared bioluminescence signals from motor neurons in

actively moving larvae compared to immotile mutant

siblings or pharmacologically induced paralysed larvae.

They observed reliably that recruitment of spinal motor

neurons was enhanced during active locomotion [29��]. In

order to investigate the role of sensory feedback, the

authors silenced glutamatergic mechanosensory neurons

(trigeminal, dorsal root ganglia, RB neurons) using the

Botulinum toxin B light chain BoTxBLC [33] driven by

the isl2b promoter. Remarkably, BoTxBLC larvae exhib-

ited earlier transitions between the fast and slow compo-

nents of the escape response, resulting in overall lower

speeds and longer swim durations. Optical activation and

fluorescence-targeted electrophysiological recordings

revealed the intraspinal responsible for the observed

effect. They showed that RB neurons synapse onto the

dorsal-most V2a interneurons selectively recruited during

fast swimming. This observation suggests that mechan-

osensory feedback from spinal RB during the initial phase

of the escape response could contribute to the enhance-

ment of speed via mechanosensory feedback [29��].

GABAergic cerebrospinal fluid contacting neurons

RB neurons are not the only sensory neurons candidates

for integrating mechanical inputs within the spinal cord

(Figure 1). Recent studies on cerebrospinal fluid-contact-

ing neurons (CSF-cNs), also known as Kolmer-Agduhr

(KA) cells, have revealed that these cells provide sensory

feedback associated with spinal bending during locomo-

tion. CSF-cNs are GABAergic ciliated neurons located in

the ventral spinal cord along the central canal found in

virtually all vertebrate species [34,35]. In the zebrafish

larva, optical stimulation of CSF-cNs using the light-

gated channel LiGluR has been shown to induce slow
Current Opinion in Neurobiology 2018, 52:48–53 
swimming, revealing a projection onto central pattern

generators in the spinal cord [36]. Recent investigations

took advantage of the expression of the transient receptor

potential channel Pkd2l1 to selectively target CSF-cNs in

the spinal cord [37,38]. Performing functional imaging via

a genetically encoded calcium indicator [39,40], Böhm

et al. showed that CSF-cNs are selectively recruited by

active muscle contraction as well as passive tail bending,

but not during fictive locomotion where muscle contrac-

tion is blocked [41��]. The mechanosensitivity of CSF-

cNs shows an interesting asymmetry. While dorsal lateral

CSF-cNs are only recruited during lateral bending on one

side [41��], ventral CSF-cNs are recruited solely during

longitudinal bending. The mechanosensitivity of CSF-

cNs was confirmed in vitro in lamprey spinal cord [42�] as

well as in zebrafish primary cultures where the critical role

of Pkd2l1 in mechanoreception has been established for

the first time using a genetic knock out approach (Stern-

berg et al., in revision). Future research should focus on

what role ASIC channels [42�] and Pkd2l1 (Sternberg

et al., in revision) play in mechanoception. It would be

interesting to know whether the mechanosensory prop-

erties of CSF-cNs may be conserved in mammals. To the

best of our knowledge, no investigation of CSF-cN

response to mechanical stimuli has yet been reported

in mammals.

In pkd2l1 zebrafish mutants, in which CSF-cNs do not

respond to mechanical stimuli, locomotor frequency dur-

ing acoustic escape responses of freely moving zebrafish

larvae was decreased, indicating a role for CSF-cNs in

enhancing speed of locomotion [41��]. The same result

was obtained when silencing CSF-cNs with the botu-

linum toxin light chain [41��]. ChannelRhodopsin-medi-

ated mapping revealed that CSF-cNs synapse on ventral
www.sciencedirect.com
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premotor V0-v (MCoDs) interneurons involved in sus-

taining slow locomotion [43] as well as onto CaP primary

motor neurons and CoPA sensory interneurons. The

mechanisms underlying CSF-cN dependent increase of

locomotor frequency during escapes could be due to

silencing of V0-v interneurons as well as ipsilateral

phase-locked inhibition of CaP motor neurons, resulting

in faster repolarization and increase in firing frequency. In

order to decipher between these hypotheses, it will be

necessary either to perform electrophysiological record-

ings of mechanosensory neurons during minor muscle

contraction or to mimic the recruitment of mechanosen-

sory neurons with light-patterned optogenetics targeting

only one side of the spinal cord.

Mechanosensory feedback contributes to
postural control
Another role for sensory feedback to the spinal cord is to

maintain postural balance during movement. During

locomotion in zebrafish larvae, dorsal and ventral axial

muscles are simultaneously activated in rostrocaudal

waves by spinal motor neurons. Primary motor neurons

are therefore recruited in a synchronous fashion by pre-

motor networks. Optogenetic stimulation of V2a excit-

atory interneurons demonstrated a segregation between

dorsal and ventral premotor circuits [44]. This differential

control of axial muscles is involved in generating torque

for postural correction and depends on descending ves-

tibular supraspinal afferents [44]. Sensorimotor gating

within the spinal cord may also be used to prevent

locomotion errors.

During embryogenesis, zebrafish embryos exhibit spon-

taneous movements, referred to as coiling. Knogler et al.
showed that during coiling, spinal CoPA interneurons

located contralaterally to the bend received prolonged

glycinergic inhibition, which is shunting excitatory inputs

from RB neurons [45��]. Shunting of CoPA interneurons

was observed either in phase with the recruitment of

ipsilateral motor neurons during spontaneous fast loco-

motion or after a brief activation in response to touch

stimuli [45��]. Such sensorimotor gating could prevent

undesirable activation of spinal motor circuits by mechan-

osensory feedback during self-generated movements.

Interestingly, spinal mechanosensory pathways originat-

ing from RB and CSF-cNs were recently investigated,

showing a similar convergence on CoPA interneurons.

Optogenetic-mediated mapping showed that CSF-cNs

selectively inhibited a subclass of primary motor neurons

(CaP) but also CoPA sensorimotor interneurons [46�].
Repetitive stimulation of CSF-cNs induced silencing

of both CaP motor neurons and CoPA interneurons

during fast locomotion events. Since, ventral CSF-cNs

are recruited by longitudinal muscle contraction during

locomotion, it was hypothesized that these neurons could

be involved in postural control during active locomotion.
www.sciencedirect.com 
Interestingly, zebrafish larvae in which CSF-cNs were

silenced by botulinum toxin displayed twice more fre-

quent rollover events in response to acoustic stimuli

inducing escape responses, compared to control animals.

This observation suggests that CSF-cNs may not only

modulate speed of locomotion during escapes but could

also participate in maintaining postural balance [46�]. In

these experiments, the silencing of CSF-cNs with Botu-

linum toxin occurred all throughout development. Fur-

ther investigations relying on mapping the projections of

CSF-cNs in the hindbrain and acute silencing of CSF-

cNs at the larval stage will be necessary to confirm this

hypothesis.

Conclusions
Over the last decade, the zebrafish larva has emerged as

an exciting animal model in systems neuroscience, allow-

ing the combination of advanced optical methods for

monitoring and manipulating genetically identified popu-

lations of neurons with physiological recordings and

behavior. This merger of genetic accessibility, optical

transparency and simple quantifiable behavior make this

model particularly well-suited to dissect sensorimotor

circuits during active locomotion in vivo. Recent studies

focusing on the spinal cord revealed novel roles for spinal

sensory neurons already known to be touch-sensitive

(RB) or whose function was previously unknown (CSF-

cNs). In addition to eliciting locomotion, these neurons

also modulate ongoing movements in vivo, enhancing

speed or maintaining postural balance during escape

responses.

Similarly in invertebrate species, Drosophila provides an

exciting animal model to study sensorimotor integration

during locomotion [47]. Flies face similar challenges of

rapidly processing different sensory inputs during flights,

and integrating with other sensory modalities in a con-

textual manner [47]. There is a large body of work on the

role of mechanosensory feedback during locomotion in

insects. In the stick insect for example, Hellekes et al.
showed that ‘reversal’ of postural reflexes during volun-

tary movements was modulated according to the type of

motor behavior being executed [48].

It remains to be elucidated to what extent the recent

findings discussed here in Anamniotes, are applicable to

Amniotes, and in particular mammals with muscle spin-

dles and Golgi tendons as proprioceptive organs. None-

theless, homology in progenitor domains conferring

genetic identity of spinal interneurons provides new

avenues to investigate well-conserved neuronal popula-

tions, and test their contribution in mechanosensory

feedback during locomotion.

Looking beyond modulation of locomotion, mechanosen-

sory feedback might also have important roles on mor-

phogenesis during the development of the spine. It is well
Current Opinion in Neurobiology 2018, 52:48–53
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known for clinicians that alteration of sensory function,

and in particular proprioceptive deficits, can lead to spinal

deformity. Similarly, knockout mice lacking propriocep-

tive receptors, both muscle spindles and Golgi tendon

organs, develop torsion of the spine, known as the hall-

mark of adolescent idiopathic scoliosis [49]. In this regard,

a recent study relying on mutants with defective cilia

exhibiting scoliosis, revealed a link between cerebrospi-

nal fluid dynamics influenced by cilia function and spine

curvature in juvenile zebrafish [50]. Correction of the

mutation and restoration of cilia motility rescued the

phenotype by preventing torsion of the spine. Interest-

ingly, syringomyelia, a debilitating neurological disorder

in which a cavity is formed within the spinal cord due to

CSF flow disturbance, is often associated with scoliosis as

well [51,52]. Could failure to integrate mechanical or

chemical signals from the CSF lead to abnormal devel-

opment of the spine? The field of sensorimotor signaling

in the spinal cord might lead to unexpected discoveries in

the years to come.
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