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REVIEW ARTICLE

Light on a sensory interface linking the cerebrospinal fluid to motor
circuits in vertebrates

Lydia Djenoune� and Claire Wyart

Institut du Cerveau et de la Moelle �epini�ere (ICM), Paris, France

ABSTRACT
The cerebrospinal fluid (CSF) is circulating around the entire central nervous system (CNS). The main
function of the CSF has been thought to insure the global homeostasis of the CNS. Recent evidence
indicates that the CSF also dynamically conveys signals modulating the development and the activity of
the nervous system. The later observation implies that cues from the CSF could act on neurons in the
brain and the spinal cord via bordering receptor cells. Candidate neurons to enable such modulation
are the cerebrospinal fluid-contacting neurons (CSF-cNs) that are located precisely at the interface
between the CSF and neuronal circuits. The atypical apical extension of CSF-cNs bears a cluster of
microvilli bathing in the CSF indicating putative sensory or secretory roles in relation with the CSF. In
the brainstem and spinal cord, CSF-cNs have been described in over two hundred species by Kolmer
and Agduhr, suggesting an important function within the spinal cord. However, the lack of specific
markers and the difficulty to access CSF-cNs hampered their physiological investigation. The transient
receptor potential channel PKD2L1 is a specific marker of spinal CSF-cNs in vertebrate species. The
transparency of zebrafish at early stages eases the functional characterization of pkd2l1þ CSF-cNs.
Recent studies demonstrate that spinal CSF-cNs detect spinal curvature via the channel PKD2L1 and
modulate locomotion and posture by projecting onto spinal interneurons and motor neurons in vivo. In
vitro recordings demonstrated that spinal CSF-cNs are sensing pH variations mainly through ASIC chan-
nels, in combination with PKD2L1. Altogether, neurons contacting the CSF appear as a novel sensory
modality enabling the detection of mechanical and chemical stimuli from the CSF and modulating the
excitability of spinal circuits underlying locomotion and posture.
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1. Introduction

1.1. The interface between the cerebrospinal fluid and
the central nervous system

The cerebrospinal fluid (CSF) refers to the fluid in the
lumen of the neural tube after fusion. In mammals, this
complex fluid is mainly secreted by the choroid plexus, vas-
cularized epithelial cell structure, which develops in the lat-
eral ventricles and the third and fourth ventricles of the
brain (Dandy, 1918, 1919; O'Connell, 1970; Pollay & Curl,
1967; Welch, 1963, 1967). The CSF flows in the ventricles,
the subarachnoid space around the brain and down the spi-
nal cord in the central canal. The CSF has a high salt con-
centration, contains polypeptides passing through the
blood–brain barrier but also encloses peptides and hundreds
of proteins that are in a low concentration (200–700 mg pro-
tein/mL), including regulators of osmotic pressure, ion car-
riers, hormones binding proteins, regulators of lipid
metabolism, components of the extracellular matrix and vari-
ous enzymes and their regulators (Gato et al., 2004; Parada,
Gato, Aparicio, & Bueno, 2006; Parada, Gato, & Bueno,
2005; Ramirez-Boo et al., 2012; Reiber & Peter, 2001; Swan

et al., 2009; Vio, Rodriguez, Yulis, Oliver, & Rodriguez,
2008; Yuan & Desiderio, 2005; Zappaterra et al., 2007).
Among the panel of chemical signals, the nerve growth fac-
tor (NGF) (Kasaian & Neet, 1989) or markers of the inflam-
matory responses such as the transforming growth factor
alpha (TGF-a) (Van Setten, Edstrom, Stibler, Rasmussen, &
Schultz, 1999) have been found. Hormones are also released
into the CSF, including melatonin from pineal gland to the
third ventricle (Skinner & Malpaux, 1999) and gonadotropin
releasing hormone (GnRH) from the median eminence and
possibly the organum vasculosum of the lamina terminalis
(Skinner, Caraty, Malpaux, & Evans, 1997). CSF composition
is dependent on the activity of surrounding brain tissue
(Reiber, 2003; Skipor & Thiery, 2008) and on the activity of
the subcommissural organ (SCO), a small gland located in
the dorsocaudal region of the third ventricle. The SCO
secretes Reissner’s fiber (RF) complex that extends along the
fourth ventricle and the central canal of the spinal cord
(Chodobski & Szmydynger-Chodobska, 2001; Perez et al.,
1996; Vio et al., 2008). The variations of these factors over
time of the day and age of the individual have not been
measured in healthy subjects. The modulatory roles of the
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CSF on the nervous system are also not well characterized
and may be more complex than initially thought. Due to its
location around the entire nervous system, anatomists ori-
ginally postulated that the CSF could provide a hydromech-
anical protection of the nervous system (Davson, Kleeman,
& Levin, 1962; Di Terlizzi & Platt, 2006; Iliff et al., 2012).
The CSF may also play a role in transport of nutrients
(Agnati, Zoli, Stromberg, & Fuxe, 1995; Ferguson,
Schweitzer, Bartlett, & Johnson, 1991; Mufson, Kroin,
Sendera, & Sobreviela, 1999; Nicholson, 1999) and of the
choroidal plexus secretion products to their site of action
(Chodobski & Szmydynger-Chodobska, 2001). Recently, it
has been shown that sleep results in the increase in convect-
ive exchange of CSF with interstitial fluid (Xie et al., 2013).
This exchange induces fluxes which increase the clearance of
b-amyloid, endogenously present in interstitial space, sug-
gesting that the CSF removes metabolic products insuring
clearance of the interstitial fluid during sleep (Xie et al.,
2013). Recent studies also show evidence that cues from the
CSF influence the formation of the central nervous system
(CNS) during development as well as modulate cell prolifer-
ation and migration in the adult. Studies at the embryonic
stages in the chick showed that embryonic CSF (e-CSF) pro-
moted neuroepithelial stem cell survival and induced prolif-
eration and neurogenesis on neuroepithelial cells (Gato
et al., 2005) and that this effect could in part be carried on
by the Fibroblast Growth Factor 2 (FGF-2) (K. Martin &
Groves, 2006). In rats, it has been shown that cortical cells
were viable and proliferated in e-CSF (Miyan, Zendah,
Mashayekhi, & Owen-Lynch, 2006) and that CSF provides a
proliferative niche for neural progenitor cells with this effect
attributable to the insulin-like growth factor (Igf2) (Lehtinen
et al., 2011). In the adult, CSF might also play a role in
migration as shown with its implication on the guidance of
neuroblasts from the lateral ventricles to the olfactory bulb
by generating a chemorepulsive-factor gradient in the adult
mouse brain (Sawamoto et al., 2006). Bachy, Kozyraki, and
Wassef (2008) showed that lipoproteins and exosome-like
particles in the e-CSF strongly interact with neuropithelial
cells via an endocytic process, which display regional specifi-
city along the developing neural tube. These modulations by
the CSF on its environment suggest a direct action via recep-
tors interfacing the CSF and the CNS.

1.2. Modulatory role of the cerebrospinal fluid on the
central nervous system

In addition to these roles, some studies have shown a modu-
latory function of the CSF content on the CNS. For instance,
transferring CSF from sleep-deprived goats to cats induced
deep sleep (Pappenheimer, Miller, & Goodrich, 1967).
Similarly, intraventricular injections of CSF from fasted
sheep induced feeding of satiated sheep (F. H. Martin,
Seoane, & Baile, 1973). Also, by purifying the CSF of sleep-
deprived cats, the fatty acid named cerebrodiene has been
found particularly elevated (Lerner et al., 1994) suggesting
that CSF content reflects a given physiological state.
Similarly, hypocretin-1 (also known as orexin-A) has been
found in reduced amounts in the CSF of narcoleptic patients

in human (Nishino et al., 2001). All these studies suggest a
strong and direct action of the CSF on the CNS indicating
that its cues are integrated and transferred by the interface
between the CSF and the CNS to the rest of the nervous
system.

1.3. In the spinal cord, a proliferative niche surrounding
the central canal

In the spinal cord, CSF flows in the central canal and is in
direct contact with the cell populations bordering the canal.
This heterogeneous region, which has mainly been investi-
gated in rodents, is composed of several ependymal and sub-
ependymal cell types, which express specific markers and
have specific morphologies and functions. In the ependymal
layer are mostly found ependymocytes linked together by
gap and zonula adherens junctions (Bruni & Reddy, 1987)
and that mainly have two motile cilia (Alfaro-Cervello,
Soriano-Navarro, Mirzadeh, Alvarez-Buylla, & Garcia-
Verdugo, 2012), tanycytes sending projections to blood ves-
sels (Bruni & Reddy, 1987; Seitz, Lohler, & Schwendemann,
1981), radial cells expressing the glial fibrillary acidic protein
(GFAP) and radial cells expressing nestin (GFAPþ or
Nestinþ radial cells) extending long radial processes to the
pial surface (Alfaro-Cervello et al., 2012; Hugnot & Franzen,
2011; Sabourin et al., 2009). In the subependymal layer are
located GFAPþ cells and cells expressing the radial glia
markers brain lipid-binding protein (BLBP) and CD15, cells
thought to be a subtype of tanycytes (Hugnot & Franzen,
2011; Sabourin et al., 2009). Among these ependymal and
radial glial cells, can also interestingly be found a population
of neurons named cerebrospinal fluid-contacting neurons
(CSF-cNs) (Agduhr, 1922; Kolmer, 1921, 1931; Sabourin
et al., 2009; Stoeckel et al., 2003; Vigh & Vigh-Teichmann,
1971). Altogether, these cells are commonly referred to as
the neurogenic niche. This denomination comes from the
neural stem cells properties that some of them have
(Anderson & Waxman, 1985; Horner & Gage, 2000; Hugnot
& Franzen, 2011; Johansson et al., 1999; Sabelstrom et al.,
2013; Sabourin et al., 2009), mostly the GFAPþ ones
(Sabourin et al., 2009).

1.4. The anatomical identification of CSF-cNs

Cerebrospinal fluid-contacting neurons are a population of
neurons located along the interface between the CNS and
the CSF. CSF-cNs in direct contact with the CSF have the
most favorable location and morphology to sense the content
of the CSF, as well as to release compounds in the CSF, and
relay this information to the rest of the CNS. CSF-cNs can
be found throughout the brain in structures such as the
SCO, the pineal gland, the hypophysis, the retina, the para-
ventricular organ among others (Vigh, Teichmann, & Aros,
1969; Vigh & Vigh-Teichmann, 1981, 1998; Vigh, Vigh-
Teichmann, & Aros, 1970). CSF-cNs located in different
organs differ in their morphology, the markers they express
and the functions they might serve. This statement is formu-
lated in reference to the work of Vigh and Vigh-Teichmann
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who collected and put together a lot of information regard-
ing the different types of morphologies in the CSF-cNs of
different organs and different species. In birds, CSF-cNs of
the paraventricular organ of the mediobasal hypothalamus
have been found photosensitive and might be involved in
the regulation of seasonal reproduction (Nakane, Shimmura,
Abe, & Yoshimura, 2014). Also, in the rat mesencephalon
near the midline of the ventral aqueduct and in the third
and fourth ventricles, CSF-cNs express the cold sensation
receptor channel TRPM8 (Du, Yang, Zhang, & Zeng, 2009)
and might then be involved in pain sensation.

1.5. Identification of CSF-cNs in the spinal cord

Kolmer (1921) and Agduhr (1922) described in over 200 ver-
tebrate species neurons lying around the central canal of the
spinal cord using silver impregnation and Nissl staining.
These cells were identified based on the atypical morphology
of their soma and projection reaching the central canal.
Kolmer (1921) referred to them as neurosensory cells and
Agduhr (1922) as intraependymal neurons. Notably, they
both reported that these cells exhibit an apical bulbous exten-
sion in the central canal and send basal axonal projections to
other cells. Their observations suggested that CSF-cNs could
compose a sensory organ (referred to as the parasagittal organ
by Kolmer and sense organ by Agduhr) at the interface
between the CSF and the CNS at the level of the spinal cord.
Later on, CSF-cN peculiar morphology has further been
investigated using electron microscopy (Vigh & Vigh-
Teichmann, 1971, 1973). These studies report that CSF-cNs
exhibit a dendritic terminal that protrudes into the lumen of
the central canal but they further demonstrated that in some
species this terminal possesses multiple microvilli, and, again
according to the species considered, a motile kinocilium
(Vigh & Vigh-Teichmann, 1973). Roberts and Clarke (1982)
used backfilling staining with horseradish peroxidase to
describe CSF-cNs in Xenopus as ciliated ependymal cells with
cilia protruding into the lumen of the central canal and an
axon projecting sagitally and rostrally to the brain. Since then,
similar observations confirmed that CSF-cNs axon projected
sagitally in the spinal cord (in Xenopus (Dale, Roberts,
Ottersen, & Storm-Mathisen, 1987a, 1987b), in zebrafish
(Djenoune et al., 2017; Fidelin et al., 2015; Wyart et al., 2009)
and in rat (Stoeckel et al., 2003)). The development of immu-
nohistochemistry on neurotransmitters enabled to demon-
strate that CSF-cNs were GABAergic (rat: Barber, Vaughn, &
Roberts, 1982; and xenopus: Dale et al., 1987a, 1987b). The
GABAergic phenotype of CSF-cNs became the main molecu-
lar criteria to define them coupled to their location surround-
ing the central canal contacting its lumen. Dale proposed to
name them Kolmer–Agduhr cells (KAs) as a tribute to the
pioneer work of the two scientists, nomenclature which is
since then used in Xenopus and zebrafish (Dale et al., 1987a,
1987b; Park, Shin, & Appel, 2004). Multiple terms have been
used to refer to CSF-cNs: intra-ependymal neurons (Agduhr,
1922), ciliated ependymal cells (A. Roberts & Clarke, 1982),
liquor contacting cells or neurons (Acerbo, Hellmann, &
Gunturkun, 2003; Brodin et al., 1990; Chiba & Oka, 1999;
Dervan & Roberts, 2003; Kaduri, Magoul, Lescaudron,

Campistron, & Calas, 1987; Megias, Alvarez-Otero, &
Pombal, 2003; B. L. Roberts, Meredith, & Maslam, 1989; J. L.
Schotland, Shupliakov, Grillner, & Brodin, 1996; Uematsu,
Shirasaki, & Storm-Mathisen, 1993), KAs (Dale et al., 1987a,
1987b; Park et al., 2004) and CSF-cNs in the great majority of
the literature. When the axon of CSF-cNs could be followed
in the spinal cord, it appeared to project sagittally (Dale et al.,
1987a, 1987b; Djenoune et al., 2017; Fidelin et al., 2015;
Stoeckel et al., 2003; Wyart et al., 2009). Often, the neuronal
nature of CSF-cNs has been occluded due to the direction of
the axonal projections relative to the section plane in trans-
verse sections. Therefore, we cannot exclude that previous
studies referring to these cells as ependymal cells were omit-
ted here. We will use the general term spinal cerebrospinal
fluid-contacting neurons or spinal CSF-cNs throughout this
review.

2. Morphology, ultrastructure and localization of
CSF-cNs in the spinal cord of vertebrates

2.1. Ultrastructure of CSF-cNs somata

Although all CSF-cNs bear an apical dendritic extension
reaching the CSF, their morphology differs depending on the
CNS region. For instance, the hypothalamic CSF-cNs bear
one atypical non motile cilium (9� 2þ0) and do not have
microvilli (Vigh & Vigh-Teichmann, 1973, 1998). Spinal
CSF-cNs have a peculiar morphology (Figure 1(A)). Their
soma is located within the intra or the sub-ependymal layer
of the central gelatinosa (referring to the area around and
including the central canal, termed by Stilling and Wallach
in 1824, cited by Lenhoss�ek (1895)) (Agduhr, 1922; Kolmer,
1921, 1931; Nagatsu, Sakai, Yoshida, & Nagatsu, 1988; Vigh
& Vigh-Teichmann, 1971, 1973, 1998; Vigh et al., 1970;
Vigh, Vigh-Teichmann, & Aros, 1974). CSF-cNs somata
exhibit specific structural features when compared to neigh-
boring cells. Indeed, among the dark stained ependymal
cells, CSF-cNs are less-electron dense and send lightly
stained processes coming from their somata located at the
outer edge of the ependymal layer (Alfaro-Cervello et al.,
2012; Alibardi, 1990; Dale et al., 1987b; Schueren &
DeSantis, 1985). Their soma is generally round or ovoid
(Barber et al., 1982; Dale et al., 1987a, 1987b; Djenoune
et al., 2017; Jaeger et al., 1983; Shimosegawa et al., 1986;
Stoeckel et al., 2003) but can also be triangular and fusiform
(Barber et al., 1982; Jaeger et al., 1983; Shimosegawa et al.,
1986; Stoeckel et al., 2003). Their nucleus is also mainly
round to oval (Alfaro-Cervello et al., 2012; Barber et al.,
1982; Marichal, Garcia, Radmilovich, Trujillo-Cenoz, &
Russo, 2009; Schueren & DeSantis, 1985) and contains one
or more nucleoli (Alfaro-Cervello et al., 2012; Schueren &
DeSantis, 1985). CSF-cNs somata are generally small with a
diameter of around 10 mm (Barber et al., 1982; Nagatsu
et al., 1988; Orts-Del'immagine et al., 2014; Stoeckel et al.,
2003) but polygonal or rod-like ones can have a diameter of
13 to 28 mm (Shimosegawa et al., 1986) and fusiform ones
can be found up to 22 mm in length (Barber et al., 1982).
Compared to ependymocytes, they possess more microtubules
and rough endoplasmic reticulum (RER) (Alfaro-Cervello
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et al., 2012; Barber et al., 1982; Schueren & DeSantis, 1985),
and free ribosomes and dense core vesicles spread through-
out their cytoplasm (Alfaro-Cervello et al., 2012; Alibardi,
1990; Barber et al., 1982; Marichal et al., 2009) suggesting a
high level of proteins synthesis. CSF-cNs cytoplasm lacks
intermediate filaments and lipid droplets (Alfaro-Cervello
et al., 2012). CSF-cNs are linked to neighboring ependymal
cells by apical zonulae adhaerens (Stoeckel et al., 2003).
Synaptic terminals can be observed at their abluminal side
(Barber et al., 1982; Jaeger et al., 1983; J. L. Schotland et al.,
1996; Schueren & DeSantis, 1985; Vigh et al., 1974; Vigh,
Vigh-Teichmann, & Aros, 1977) terminals containing small,
round and clear vesicles (LaMotte, 1987; Vigh et al., 1977).
They receive axo-somatic synaptic contacts (Alfaro-Cervello
et al., 2012; Djenoune et al., 2017; Vigh, Vigh-Teichmann,
Manzano e Silva, & van den Pol, 1983). Over the length of
the spinal cord, CSF-cNs spread along the entire central
canal but with a higher density at the thoracic level in rat
(Shimosegawa et al., 1986; Stoeckel et al., 2003). Regarding
their location relative to the central canal, rat CSF-cNs seem
rather randomly distributed (Stoeckel et al., 2003) while
mouse CSF-cNs are mainly located dorsally and ventrally
with fewer cells laterally (Orts-Del'immagine et al., 2012).
The density of CSF-cNs is higher in spinal cord than in
brainstem (Orts-Del'immagine et al., 2014).

2.2. An apical extension reaching the central canal

Spinal CSF-cNs bear at their apical surface an extension
directed toward the central canal (Figure 1(A)), which lies in
its lumen and expresses dendritic markers such as the micro-
tubule-associated protein 2 (MAP2) (rat: Alonso, 1999;
Kutna, Sevc, Gombalova, Matiasova, & Daxnerova, 2014;
mouse: Orts-Del'immagine et al., 2014). This structure has
been referred to as a ‘central body’ (Vigh & Vigh-
Teichmann, 1973; Vigh et al., 1974), a ‘dendritic process/

terminal/ending’ (Vigh & Vigh-Teichmann, 1973; Vigh
et al., 1974, 1977), ‘brush border’ (Dale et al., 1987a), a ‘bud’
(Stoeckel et al., 2003), or a ‘bulb-like ending’ (Jalalvand,
Robertson, Wallen, Hill, & Grillner, 2014). We will refer to
it as an apical dendritic extension here. This extension has
the specificity of bearing a tuft of microvilli and in some
species only a kinocilium, a canonical motile type of primary
cilium. Microvilli are specialized plasma membrane exten-
sions built around a parallel actin bundle (PAB), packed
cluster of actin filaments (Bartles, 2000) held together by dif-
ferent sets of actin-bundling proteins (Bartles, 2000;
Frolenkov, Belyantseva, Friedman, & Griffith, 2004). These
actin bundles measure 1–5 mm in length and contain typic-
ally 20–25 actin filaments per bundle (Bartles, 2000;
Heintzelman & Mooseker, 1992). On the contrary, the cilium
is a membranous protrusion from the plasma membrane
supported by a microtubule-based axoneme arising from the
centriole during the G0/G1 state of the cell cycle (Alieva &
Vorobjev, 2004). There are two types of cilia; primary cilia
and motile ones. Primary cilia are non-motile and have a
cytoskeleton consisting in nine doublets of microtubules
(9� 2þ0 structure). A primary cilium, found in most of the
cells, is the sensory center of the cell that regulates cell pro-
liferation and embryonic development. Motile cilia have nine
doublets of microtubules as well but also an extra central
doublet (two singlet microtubules in the center of the central
ring) (9� 2þ2). Notably in the sensory hair cells, the pri-
mary motile cilia are named kinocilia (Wersall, 1956).
Kinocilia were first described by Wersall (1956) in hair cells,
specialized mechanosensory receptors of the auditory and
vestibular systems that convert head movements and sound
waves into electrical signals (reviewed in Schwander, Kachar,
& Muller, 2010). It became by extension the terminology
used to designate the cilia of sensory cells (Flock & Duvall,
1965; Kindt, Finch, & Nicolson, 2012; Wersall, 1956). The
kinocilium in auditory hair cells, contrary to vestibular ones,

relay of 
mechanical stimuli

modulation of 
locomotor CPGs

posture

chemo-sensitivityzebrafish sand lizard mouse macaque

apical extension

basal pole

central canal

(A)

(C)

(B)

Figure 1. Graphical illustration of the morphological and functional properties of spinal CSF-cNs. (A) Spinal CSF-cNs possess a bulbous apical dendritic extension
whose shape differs between species. In particular, the apical extension in anamniotes bears a multitude of microvilli while in amniotes the apical extension of CSF-
cNs bears few microvilli. (B) Spinal CSF-cNs were shown to contact several classes of interneurons and motor neurons within the zebrafish spinal cord. Dorsal CSFcNs
(first cell from the right) project onto V0-v (second cell from the right) when ventral CSF-cNs (third cell from the right) contact CaPs primary motor neurons (first cell
from the left). Both populations of CSF-cNs project onto CoPA sensory interneurons (second cell from the left). (C) Spinal CSF-cNs are components of a sensory inter-
face between the CSF and the CNS. CSF-cNs respond to active bending of the spinal cord, ensure the control of postural balance, provide input to spinal locomotor
CPGs and might integrate cues form the CSF.
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is present at early developmental stages and regresses in
mammals and birds while it remains in zebrafish and
Xenopus (Denman-Johnson & Forge, 1999; Kikuchi &
Hilding, 1966; Tanaka & Smith, 1978). In a similar manner, a
kinocilium can be found in the apical extension of adult spi-
nal CSF-cNs only in some species: in amphibians (Alibardi,
1990; Dale et al., 1987b; Vigh & Vigh-Teichmann, 1998; Vigh,
Vigh-Teichmann, Koritsanszky, & Aros, 1971), lamprey (J. L.
Schotland et al., 1996), chick (Schueren & DeSantis, 1985),
carp (Vigh et al., 1974), turtle (Trujillo-Cenoz, Fernandez,
Radmilovich, Reali, & Russo, 2007; Vigh et al., 1977) and pos-
sibly in rat (Marichal et al., 2009; Stoeckel et al., 2003).
However, there is no consensus on this matter in rodents as
cilia were located in other studies basally on the soma of CSF-
cNs in mouse (Alfaro-Cervello et al., 2012; Orts-
Del'immagine et al., 2014). This absence of kinocilium in the
apical extension contacting the CSF seems to be shared by the
rest of mammals investigated (such as rabbit in Leonhardt,
1967). The CSF-cNs apical bulbous dendritic extension bears
multiple microvilli whose number varies across species
(Jaeger et al., 1983; LaMotte, 1987; Marichal et al., 2009;
Schueren & DeSantis, 1985; Vigh & Vigh-Teichmann, 1998;
Vigh et al., 1974, 1977; Figure 1(A)). For instance in Xenopus,
CSF-cNs have been described as having a brush border con-
sisting of long thin and numerous (sometimes more than 20)
microvilli (Alibardi, 1990; Vigh & Vigh-Teichmann, 1998).
Mammals CSF-cNs also have microvilli at their extension but
less than in amphibians or teleost, as shown in mouse (Orts-
Del'immagine et al., 2012; Vigh et al., 1983), in macaque
(LaMotte, 1987), in opossum (Vigh et al., 1983) and in rat
(Jaeger et al., 1983; Marichal et al., 2009) although this point
remains debated in rat (see Stoeckel et al., 2003). The shape
of the apical extension differs between species. Indeed, in
anamniotes (fishes and frogs, incorrectly referred to as ‘lower
vertebrates’), microvilli are located at the apical pole of CSF-
cNs somata. In amniotes (birds, reptiles and mammals), CSF-
cNs extend at their apical pole a pod-like extension into the
central canal resulting from a constriction of the apical pole
bearing less microvilli. The observations from anatomy were
not using any specific markers for labelling CSF-cNs.
Consequently CSF-contacting terminals were distinguished
from ependymal cells by their microvilli being longer and
thicker than ependymal microvilli but shorter than kinocilia
(Vigh et al., 1974). In addition to microvilli, CSF-cNs apical
bulbous extensions also exhibit subcellular structures that are
representative of secretory cells. For instance, their processes
enclose numerous vesicles and are rich in microtubules as
shown for instance in rat (Jaeger et al., 1983; Stoeckel et al.,
2003), in mouse (Alfaro-Cervello et al., 2012; Vigh et al.,
1977), in guinea pig (Vigh et al., 1983), in macaque (LaMotte,
1987), in chick (Schueren & DeSantis, 1985), in Xenopus
(Alibardi, 1990) and in lamprey (J. L. Schotland et al., 1996).
CSF-cNs contact the lumen of the central canal by cytoplas-
mic blebs storing mitochondria, multivesicular bodies, dense
granules, clear and dense core vesicles (Alibardi, 1990;
Schueren & DeSantis, 1985). Rat CSF-cNs central and lateral
processes contain pleomorphic vesicles of various sizes and
granularity (Jaeger et al., 1983). Regarding the junctions
between CSF-cNs apical extensions and surrounding cells, at

the sites where the microvilli enter the central canal, Vigh and
collaborators observed desmosome-like junctions connecting
the CSF-cNs processes with the neighboring ependymal
cells (LaMotte, 1987; Vigh, Vigh-Teichmann, & Aros, 1971;
Vigh et al., 1974) although other authors observed zonula
adhaerens between the apical extension and the ependymal
cells (Stoeckel et al., 2003) or both desmosomes and zonula
adhaerens (LaMotte, 1987). From the work of Vigh and
Vigh-Techmann, there is evidence that the apical extensions
of CSF-cNs via their kinocilium may contact in some cases
the RF (2004; Vigh et al., 1970, Vigh, Vigh-Teichmann, &
Aros, 1971). Kolmer (1921) suggested a connection in the
receptor mechanism between the Reissner's fiber and the
‘neurosensory cells’ of the central canal. He hypothesized
that this structure, dislocated by the movement of the spi-
nal cord, could stimulate the terminals of the nerve cells.
Nonetheless this is very difficult to establish without clear
markers for CSF-cNs. It is though not unlikely that CSF-
cNs cilia systematically contact the RF.

2.3. Description of CSF-cNs axonal projections

CSF-cNs axons have projections within the spinal cord lying
in the ventral margin. However, their axonal distribution in
the ventral spinal cord differs between species. Two main
profiles have so far been reported. First, CSF-cNs axons run
ventrolaterally to converge to a bilateral bundle called the
centrosuperficial tract to form terminals on the ventral sur-
face of the spinal cord. There, the fibers form neurohormo-
nal nerve endings attached by hemidesmosomes to the basal
lamina of the spinal cord facing the subarachnoidal space.
Second, CSF-cNs axons project in an ipsilateral and ascend-
ing manner. In the turtle (Emys orbicularis), CSF-cN axons
run to the ventrolateral surface of the spinal cord where they
form terminal enlargements on the surface of the spinal cord
(Vigh et al., 1977). Interestingly, in the lamprey, CSF-cNs
also extend processes to the ventral plexus (Christenson,
Bongianni, Grillner, & Hokfelt, 1991; Jalalvand et al., 2014;
Megias et al., 2003; Ochi & Hosoya, 1974; Vigh et al., 2004)
as well as to the ventrolateral margin where they display
endfeet structures (Megias et al., 2003; Vigh et al., 1977) and
reach the intraspinal stretch receptor called the edge cell
(Christenson, Bongianni, et al., 1991; Jalalvand et al., 2014).
This axonal innervation allows the relay by CSF-cNs of
information between the internal CSF, circulating within the
central canal and contacted by the apical extension of the
cells, and the external CSF, located in the subarachnoidal
space reached by their axons. On the contrary, in other spe-
cies such as the rat, CSF-cNs, axons run sagitally within a
tight bundle running under the ependyma, inserted between
basal poles of ependymal cells (Stoeckel et al., 2003). They
also extend more ventrally where they intermingle with mye-
linated axons of the corticospinal tract to eventually contact
the walls of the ventral median fissure (Stoeckel et al., 2003).
Similarly, when single CSF-cNs were labeled in vivo, it was
noticeable that their axons ascend ipsilaterally and run in
the ventrolateral spinal cord (in xenopus and zebrafish: Dale
et al., 1987a, 1987b; Djenoune et al., 2017; Fidelin et al.,
2015; Wyart et al., 2009). Interestingly, in cat and macaque,
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those two types of axonal projections are found. Indeed,
their CSF-cNs can be traced to terminal fields along the ven-
tral median fissure and the ventral lateral surface of the spi-
nal cord (LaMotte, 1987). CSF-cNs axons contain large
dense vesicles (Vigh et al., 2004, 1977, 1983). The large
granular vesicles found in the axons reaching the basal lam-
ina of the external surface of the tissue in particular led to
the idea that CSF-cNs may constitute a spinal neurosecretory
system (Vigh et al., 1977, 1983). CSF-cNs may be receptive
to stimuli exerted by the internal (ventricular) CSF and cap-
able of translating them into a neurosecretory output
directed toward the external (subarachnoid) CSF (Vigh-
Teichmann & Vigh, 1979, 1989; Vigh et al., 1983, 2004). It
also has to be noted that CSF-cNs express PSA-NCAM
(Alonso, 1999; Bonfanti, Olive, Poulain, & Theodosis, 1992;
Marichal et al., 2009; Seki & Arai, 1993a, 1993b; Stoeckel
et al., 2003) and are not myelinated accordingly (rat:
Stoeckel et al., 2003; turtle: Vigh et al., 1977).

3. Molecular characterization of spinal CSF-cNs

Several markers were found in CSF-cNs other than GABA.
In the following part, we will review the different types of
factors reported in spinal CSF-cNs.

3.1. The GABA as a general molecular marker of
CSF-cNs

The gamma-aminobutyric acid (GABA) is considered as the
main inhibitory neurotransmitter of the CNS. However,
GABA is first excitatory at early stages of development and
becomes inhibitory at later stages of neuronal differentiation
(Boulenguez et al., 2010; Sieghart, 1995; Stil et al., 2009;
Yamada et al., 2004). GABA expression in CSF-cNs has been
first reported in rat (Barber et al., 1982). Since then, the
expression of GABA in CSF-cNs, or expression of related
enzymes such as glutamic acid decarboxylase (GAD) 65 and
67 isoforms or transporters such as the vesicular GABA
transporter (VGAT), have been reported in many species: in
rat (Barber et al., 1982; Feldblum, Dumoulin, Anoal,
Sandillon, & Privat, 1995; Kutna et al., 2014; Mackie,
Hughes, Maxwell, Tillakaratne, & Todd, 2003; Magoul,
Onteniente, Geffard, & Calas, 1987; Stoeckel et al., 2003),
turtle (Reali, Fernandez, Radmilovich, Trujillo-Cenoz, &
Russo, 2011), African clawed frog (Binor & Heathcote, 2001;
Dale et al., 1987a, 1987b), zebrafish (Bernhardt, Patel,
Wilson, & Kuwada, 1992; Djenoune et al., 2014;
Higashijima, Mandel, & Fetcho, 2004; Higashijima, Schaefer,
& Fetcho, 2004; S. C. Martin, Heinrich, & Sandell, 1998;
Park et al., 2004; Schafer, Kinzel, & Winkler, 2007; Shin,
Poling, Park, & Appel, 2007; Wyart et al., 2009; Yang,
Rastegar, & Strahle, 2010; Yeo & Chitnis, 2007), eel (Dervan
& Roberts, 2003; B. L. Roberts, Maslam, Scholten, & Smit,
1995), trout (B. L. Roberts et al., 1995), carp (Uematsu et al.,
1993), dogfish (Sueiro, Carrera, Molist, Rodriguez-Moldes, &
Anadon, 2004), amphioxus (Anadon, Adrio, & Rodriguez-
Moldes, 1998), lampreys (Brodin et al., 1990; Christenson,
Alford, Grillner, & Hokfelt, 1991; Christenson, Bongianni,

et al., 1991; Fernandez-Lopez et al., 2012; Jalalvand et al.,
2014; Melendez-Ferro et al., 2003; Robertson, Auclair,
Menard, Grillner, & Dubuc, 2007; Rodicio, Villar-Cervino,
Barreiro-Iglesias, & Anadon, 2008; Ruiz, Pombal, & Megias,
2004; J. L. Schotland et al., 1996; Villar-Cervino, Holstein,
Martinelli, Anadon, & Rodicio, 2008) and mouse (Feldblum
et al., 1995; Kaduri et al., 1987; Orts-Del'immagine et al.,
2014). In addition, GABA seems expressed systematically in
all CSF-cNs. The consistent GABAergic expression shared by
all spinal CSF-cNs in many species became a way to identify
them in combination with features reflecting their typical
morphology. Interestingly, in rat, cells that appear to be
CSF-cNs express GABAB receptor immunoreactivity
(Margeta-Mitrovic, Mitrovic, Riley, Jan, & Basbaum, 1999).
Moreover, looking at the distribution of GABAergic neurons
in the rat spinal cord, Barber et al. (1982) identified two
types of GAD-positive CSF-cNs with different somata shapes
consistent with previous studies. These findings suggest that
CSF-cNs consist in a heterogeneous population of neurons
classified in at least two subtypes with specific morphological
features. The hypothesis that CSF-cNs are heterogeneous is
reinforced by the other markers observed in only subsets of
these cells.

3.2. Other neurotransmitters found in spinal CSF-cNs

Other neurotransmitters were observed in CSF-cNs. For
instance, in situ hybridization and immunohistochemistry
for the vesicular transporter of glutamate (VGLUT) and
glutamate itself in the lamprey spinal cord showed that all
GABAergic CSF-cNs were glutamatergic (Fernandez-Lopez
et al., 2012). Glutamate, in addition to its essential meta-
bolic role, is a major mediator of excitatory signals in the
CNS and is involved in many physiologic and pathologic
processes, such as excitatory synaptic transmission, synaptic
plasticity, cell death, stroke, and chronic pain (Basbaum &
Woolf, 1999; Mayer & Westbrook, 1987). The physiological
relevance of the co-expression of GABA and glutamate in
lamprey CSF-cNs remains to be determined. Nonetheless,
this glutamatergic expression in CSF-cNs might be specific
to lamprey. Indeed, in other species, glutamate has so far
never been reported in CSF-cNs where its expression is
found in other interneurons such as Rohon-Beard
(Higashijima, Mandel, et al., 2004). Considering other
markers of CSF-cNs, their expression appears restricted to
only a subpopulation of the cells. For instance in the lam-
prey, looking at the distribution of another neurotransmit-
ter, the glycine, in glutamatergic CSF-cNs, the authors
observed that only some of them were also glycinergic
(Fernandez-Lopez et al., 2012). Similarly, comparing GABA
and glycine expression in CSF-cNs, only ventral ones have
been found expressing both markers (Villar-Cervino et al.,
2008), suggesting the existence of two molecularly distinct
CSF-cN populations. Expression of glycine in a restricted
subset of CSF-cNs might be specific to the agnathan though
as glycine does not seem to be found in the CSF-cNs of the
species where glycine spinal cord expression has been
reported like zebrafish for instance (Higashijima, Mandel,
et al., 2004).
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3.3. Neuromodulator phenotypes of spinal CSF-cNs

In addition to neurotransmitters, several monoamines and
neuropeptides can be found in CSF-cNs.

3.3.1. Catecholamines
Among monoamines, catecholamines are expressed in the
CSF-cNs of salamander (Sims, 1977), garfish (Parent &
Northcutt, 1982) and quail (Guglielmone & Panzica, 1985).
Moreover, the enzyme responsible for catecholamine synthe-
sis, the tyrosine hydroxylase (TH) can also be found in CSF-
cNs of the African clawed frog (Heathcote & Chen, 1993),
American bullfrog, Northern leopard frog (Chesler &
Nicholson, 1985) and in chick (Wallace, Mondragon,
Allgood, Hoffman, & Maez, 1987). Dopamine is found in
CSF-cNs in multiple species: the lamprey (Barreiro-Iglesias,
Villar-Cervino, Anadon, & Rodicio, 2008; McPherson &
Kemnitz, 1994; Pierre, Mahouche, Suderevskaya, Reperant, &
Ward, 1997; Pombal, El Manira, & Grillner, 1997; Rodicio
et al., 2008; J. Schotland et al., 1995; J. L. Schotland et al.,
1996), ray (B. L. Roberts & Meredith, 1987), eel (B. L.
Roberts et al., 1989; B. L. Roberts et al., 1995), chameleon
(Bennis, Calas, Geffard, & Gamrani, 1990) and pigeon
(Acerbo et al., 2003). In these species, dopamine expression
is mainly reported as ventral to the central canal in the floor
plate (Acerbo et al., 2003; Heathcote & Chen, 1993; B. L.
Roberts et al., 1995; Rodicio et al., 2008). As reported for
glycine, dopamine expression when compared to GABA is
always found restricted to a subpopulation of GABAergic
CSF-cNs (B. L. Roberts & Meredith, 1987; Rodicio et al.,
2008). The catecholamine expression pattern confirms the
classification of CSF-cNs in at least two cell types.

3.3.2. Serotonin
In addition to catecholamines, some CSF-cNs express other
monoamines in restricted species such as serotonin in the
immature and adult salamander (Sims, 1977), in lamprey
and hagfish (Ochi, Yamamoto, & Hosoya, 1979), in garfish
(Parent & Northcutt, 1982), in spotted gar, in chick (Sako,
Kojima, & Okado, 1986) and in zebrafish (Djenoune et al.,
2017; Montgomery, Wiggin, Rivera-Perez, Lillesaar, &
Masino, 2016). As for previous markers, serotoninergic CSF-
cNs were described ventral to the central canal (Ochi et al.,
1979; Sims, 1977) and restricted only to a subset of CSF-cNs
(Djenoune et al., 2017; Montgomery et al., 2016).

3.3.3. Trace amines
Trace amines are structurally and metabolically related to
monoamines but expressed in very small nanomolar concen-
trations (Borowsky et al., 2001; Zucchi, Chiellini, Scanlan, &
Grandy, 2006). The aromatic-L-amino-acid decarboxylase
(AADC) trace amine has been reported in some rodents
CSF-cNs (rat: Jaeger et al., 1983; mouse and rat: Nagatsu
et al., 1988). Interestingly in these studies, immunocyto-
chemistry for catecholamines and monoamines failed to
show any signal. Concordantly, the authors did not
find expression of TH, dopamine nor serotonin in AADCþ

CSF-cNs. This might be explained by a difference of expres-
sion in mammals compared to anamniotes underlying spe-
cies specific expression.

3.3.4. Neuropeptides
In addition to these classical neuromodulators, other mole-
cules specific of neuronal cell types have been found in spinal
CSF-cNs. Among them, somatostatin is the most common
neuropeptide reported in these cells. Somatostatin has been
found in CSF-cNs of lamprey (Buchanan, Brodin, Hokfelt,
Van Dongen, & Grillner, 1987; Christenson Alford, Grillner,
& Hokfelt, 1991; Jalalvand et al., 2014; Lopez et al., 2007),
coho salmon (Yulis & Lederis, 1988b) and zebrafish
(Djenoune et al., 2017; Wyart et al., 2009). In addition, uroten-
sin II (UII)-like immunoreactivity and expression of neuro-
peptides of the UII family have also been described in CSF-
cNs of several fish (Yulis & Lederis, 1986, 1988a, 1988b).
Interestingly, the mutually exclusive expression patterns of
somatostatin and UII or UII related peptides in CSF-cNs
(Quan et al., 2015; Yulis & Lederis, 1988b) confirm again the
coexistence of at least two distinct subpopulations of CSF-cNs.

Among the peptides expressed by CSF-cNs, methioni-
ne–enkephalin–arginine–glycine–leucine
(Met–Enk–Arg–Gly–Leu) is an endogenous opioid peptide
identified from bovine adrenal chromaffin granules
(Kilpatrick, Jones, Kojima, & Udenfriend, 1981). This pep-
tide derives from Met-enkephalin which itself derives from
proenkephalin. Shimosegawa et al. (1986) found that this
opioid was expressed in rat CSF-cNs. Interestingly, the
authors identified four types of CSF-cNs based on soma
shape and axonal projections, suggesting that several
subtypes of CSF-cNs with different morphological features
coexist in the rat spinal cord. The functional relevance of
CSF-cNs expressing opioids receptors agonists involved in
pain transmission has to be determined.

One additional peptide, the vasointestinal peptide (VIP)
mainly reported in the enteric system, has been found in
CSF-cNs of mammals in rat and macaque (LaMotte, 1987).

3.3.5. Calcium binding proteins
Interestingly, among all the repertoires of factors expressed
in CSF-cNs, the calcium binding proteins calbindin and cal-
retinin have been found in spinal CSF-cNs of the lamprey
(Megias et al., 2003). Calcium binding proteins expression in
CSF-cNs could be critical for the calcium modulation of the
channel activity that will be mentioned in the next section.

4. Relevance of this sensory neuronal population to
the spinal cord physiology

4.1. CSF-cNs as a sensory interface between the CSF and
the CNS

The initial hypothesis of Kolmer and Agduhr regarding the
function of CSF-cNs was that these cells were sensory neu-
rons integrating cues from the CSF (1922, 1921, 1931). Erik
Agduhr suggested that these neurosensory cells could per-
form regulatory functions within the spinal cord (1922).
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Walter Kolmer suggested that the cells could have a mech-
anoreceptor function: by perceiving movement of the spinal
column, they might connect via their axons to motoneurons
thereby constituting a major component of an intraspinal
proprioceptive sensory-motor loop (1922, 1921, 1931). Later,
Vigh and Vigh-Teichmann who extensively characterized the
ultrastructure of the CSF-cNs system, restated that CSF-cNs
may be sensory because of their morphological resemblance
to hair cells (Vigh & Vigh-Teichmann, 1971, 1973; Vigh
et al., 1977). A chemosensory hypothesis was strengthened
by recent studies in mammals showing that CSF-cNs
expressed the TRP channel PKD2L1 and that their firing was
modulated by changes of extracellular pH (Huang et al.,
2006; Orts Del'Immagine et al., 2012, 2015). CSF-cNs,
through their apical extension, could therefore sense vari-
ation of CSF pH and relay this information to the rest of
spinal circuits (Figure 1(B)). In addition, ATP in the CSF
might regulate the activity of CSF-cNs. Indeed, CSF-cNs in
the rat spinal cord express the specific subunit P2X2 of ATP
receptor P2X (Stoeckel et al., 2003). Interestingly, the activity
of the channel P2X2 increases in response to an acidification
(Dunn, Zhong, & Burnstock, 2001; Khakh, 2001; North &
Surprenant, 2000). Thus, CSF-cNs P2X2 receptors may detect
changes in the concentration of ATP in the CSF, particularly
under conditions of acidosis.

4.2. PKD2L1, a calcium-modulated channel expressed in
CSF-cNs

Recent studies in mouse identified a channel as being specif-
ically expressed in neurons located around the central canal
contacting the CSF in the spinal cord (Huang et al., 2006).
This channel is called polycystic kidney disease 2 like 1
(PKD2L1) and has originally been identified for its role in
sour taste in taste buds (Inada et al., 2008; Ishii et al., 2009;
Ishimaru et al., 2006, 2010; Kawaguchi et al., 2010; Yu et al.,
2012; Zheng et al., 2015). PKD2L1 belongs to the family of
transient receptor potential (TRP) channels typically involved
in detecting chemical, thermic and mechanical stimuli
(Delmas, 2004, 2005; Nilius & Owsianik, 2011; Ramsey,
Delling, & Clapham, 2006; Venkatachalam & Montell, 2007).
Among the seven subfamilies of TRPs, PKD2L1 belongs to
the transient receptor potential polycystin (TRPP) subfamily
of Ca2þ-permeant ion channels composed of polycystic kid-
ney disease (PKD) proteins and also named polycystins
(Delmas, 2005; Ishimaru & Matsunami, 2009; Nilius, 2007;
Sandford, Mulroy, & Foggensteiner, 1999). Sensory proper-
ties of PKD2L1 have been evoked in several studies that will
be detailed below. PKD2L1 is a calcium-modulated (when
over-expressed in xenopus oocytes as shown in Chen et al.,
1999) nonselective cation channel permeable to sodium,
potassium and calcium ions. Upon rise of extracellular or
intracellular calcium or under hypo-osmotic conditions, the
channel shows large currents (Chen et al., 1999; Delmas,
2005; Murakami et al., 2005; Nauli, White, Hull, & Pearce,
2003). Upon discovery, PKD2L1 was shown to be expressed
in CSF-cNs in the mouse spinal cord (Huang et al., 2006).
By FISH and IHC on coronal and sagittal sections of the spi-
nal cord, the authors observed along the entire spinal cord

distinct PKD2L1þ cells with apical extension reaching the
central canal. Since then, the generation of mice transgenic
lines using pkd2l1 promoter provided insight on physio-
logical properties of spinal CSF-cNs in mouse (Bushman, Ye,
& Liman, 2015; Orts Del'Immagine et al., 2012, 2015, 2014).
Indeed, these studies showed that PKD2L1þ spinal CSF-cNs
fired action potentials in response to decreased extracellular
pH (Bushman et al., 2015; Huang et al., 2006; Orts
Del'Immagine et al., 2012, 2015) as TRCs but do not show
sustained inward proton current (Bushman et al., 2015).

4.3. Secretory properties of CSF-cNs

In addition to a sensory function, CSF-cNs may have secre-
tory properties. Based on their observations on ultrastruc-
ture, Vigh and Vigh-Teichmann proposed that the cells and
their axons could constitute a neurosecretory system based
on their axon endings containing synaptic vesicles and large
dense vesicles. These terminals were found attached to the
basal lamina of the external surface of the nervous tissue by
hemidesmosomes where synaptic vesicles would be accumu-
lated (Vigh & Vigh-Teichmann, 1971, 1973; Vigh et al.,
1977). CSF-cNs may therefore be receptive via their apical
extension to stimuli exerted by the internal (ventricular) CSF
circulating within the central canal, and capable of translat-
ing these cues into a neurosecretory output directed toward
the external (subarachnoid) CSF reached by their axons. An
alternative secretory function of CSF-cNs was proposed by
Leonhardt (1967) to be located within the apical bulbous
extension from which CSF-cNs would release their ‘products’
in the CSF within the central canal. Our characterization of
large dense vesicles at the base of the apical extension of
zebrafish CSF-cNs (Djenoune et al., 2017) corroborates this
hypothesis although it remains to be established whether and
how these vesicles may be released in the CSF. Nonetheless,
whether all spinal CSF-cNs share the same sensory proper-
ties is not clear. Recently, we demonstrated that CSF-cNs
respond to passive and active bending of the spinal cord
(B€ohm et al., 2016) and ensure the control of postural bal-
ance (Hubbard et al., 2016; Figure 1(B)). Notably, we
showed that dorsal CSF-cNs respond to active bending of
the spinal cord selectively on the contracting side when dor-
sal contralateral and ventral cells remained mostly silent
(B€ohm et al., 2016). These results suggest that the different
populations of CSF-cNs could bear specific functional prop-
erties sustained by the pool of specific markers they possess
or given their physiological context. They also suggest that
CSF-cNs could constitute a mechanosensory system provid-
ing proprioceptive feedback to coordinate balance.

4.4. CSF-cNs role in the excitability of motor circuits

Activation of CSF-cNs can induce locomotion in zebrafish
larvae (Wyart et al., 2009) indicating that the cells could
provide direct input to the spinal locomotor central patter
generator. Recent studies from our lab reinforce this hypoth-
esis (Djenoune et al., 2017; Fidelin et al., 2015; Hubbard
et al., 2016). We provided anatomical evidence for
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projections from CSF-cNs onto three classes of premotor
excitatory interneurons, V0-v, V3 and V2a interneurons
(Djenoune et al., 2017; Fidelin et al., 2015; Figure 1(C)).
These three classes are active during slow locomotion in lar-
val zebrafish (Borowska et al., 2013; Crone et al., 2008;
Dougherty & Kiehn, 2010a, 2010b; McLean, Fan,
Higashijima, Hale, & Fetcho, 2007; McLean, Masino, Koh,
Lindquist, & Fetcho, 2008; Menelaou, VanDunk, & McLean,
2014; Zhang et al., 2008). Remarkably, this work reveals that
CSF-cNs have an inhibitory action when they are stimulated
during ongoing locomotion, while these cells induce delayed
fictive swimming when activated at rest. We also demon-
strated a direct connection between a subpopulation of CSF-
cNs and CaPs motor neurons (Djenoune et al., 2017;
Hubbard et al., 2016). These results indicate that CSF-cNs
differently gate and tune the slow and fast locomotor central
pattern generators and thereby control the occurrence and
duration of locomotor events.

Whether the projections of CSF-cNs among spinal circuits
are conserved across species is unknown. In lamprey, CSF-
cNs send processes to the ventral plexus (Christenson,
Bongianni, et al., 1991; Jalalvand et al., 2014; Megias et al.,
2003; Ochi et al., 1979; Vigh et al., 2004) or the ventrolateral
margin where they display endfeet structures (Megias et al.,
2003; Vigh et al., 1977) innervation which allows the relay of
information between the internal and external CSF. Lamprey
CSF-cNs seem to make contact in the lateral plexus with the
intraspinal stretch receptor called edge cells (Christenson,
Alford, et al., 1991; Jalalvand et al., 2014), which modulates
the locomotor network (Grillner & Blomberg, 1984; Vinay
et al., 1996). This projection suggests that CSF-cNs may
modulate locomotion by influencing edge cells and thus the
locomotor-related sensory feedback. Whether this connectiv-
ity between CSF-cNs and premotor neurons or the modula-
tory role of CSF-cNs on locomotor CPGs is conserved in
mammals remains to be determined.
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