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The role of sensory feedback in shaping locomotion has been

long debated. Recent advances in genetics and behavior

analysis revealed the importance of proprioceptive pathways in

spinal circuits. The mechanisms underlying peripheral

mechanosensation enabled to unravel the networks that

feedback to spinal circuits in order to modulate locomotion.

Sensory inputs to the vertebrate spinal cord were long thought

to originate from the periphery. Recent studies challenge this

view: GABAergic sensory neurons located within the spinal

cord have been shown to relay mechanical and chemical

information from the cerebrospinal fluid to motor circuits.

Innovative approaches combining genetics, quantitative

analysis of behavior and optogenetics now allow probing the

contribution of these sensory feedback pathways to

locomotion and recovery following spinal cord injury.
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Introduction
Locomotion is generated by the oscillatory activity of

motor neurons driven by groups of local interneurons in

the spinal cord [1]. These premotor networks do not rely

on sensory feedback to generate the basic locomotor

rhythm as the isolated spinal cord can oscillate without

any peripheral input in many species [2]. Nonetheless, in

moving animals, there is evidence that sensory feedback

provides strong modulation of locomotion and is critical

for its proper function. In particular, excitation from

peripheral afferents can initiate locomotion [3] as well

as reset the oscillatory cycle [4]. Yet, the technical chal-

lenges that arise from selectively targeting and manipu-

lating sensory pathways during ongoing locomotion make
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it difficult to probe the contribution of sensory feedback

to natural locomotion. The recent discoveries of new

channels and selective markers of sensory cells made it

possible to map new pathways and investigate their

functions. Here we discuss the latest work on the mech-

anisms and relevance of peripheral mechanosensory feed-

back for shaping motor output. In addition, we introduce

the recent discovery that cerebrospinal fluid-contacting

neurons (CSF-cNs) constitute a new class of GABAergic

sensory neurons located within the spinal cord.

Peripheral sensory neurons
In the peripheral nervous system, dorsal root ganglia

(DRG) are the primary entry point for somatic sensation

in vertebrates. Temperature, pain, itch and touch but also

proprioceptive signals like muscle contraction and load

are relayed by DRG excitatory afferents to spinal circuits

where they are processed (Figure 1). These diverse

signals are carried by different subclasses of DRG types.

The sensory diversity of different DRG neurons primarily

results from the differential expression of channels and

receptors that mediate the different stimuli [5]. Although

peripheral sensory neurons mediate many different types

of sensory inputs such as temperature, pain, itch and

chemical irritants, the most relevant for locomotion is

mechanical feedback from muscle and skin.

DRG subtypes have mainly been characterized based on

their innervation pattern, electrophysiological properties

and responsiveness [5]. The identification of genetic

markers to label some of the subclasses such as parval-

bumin for proprioceptive DRGs [6,7] has been key to

understand the properties and functions of proprioceptive

neurons. Recent efforts using single cell RNA sequencing

made it possible to divide neuronal subtypes based on

their gene expression profiles and provide a more com-

prehensive and unbiased classification. However, the

exact number of subtypes and their functional character-

istics remains to be established [8,9��].

A recent body of work identified Piezo2 as the main

channel responsible for proprioception and touch re-

sponse. The initial characterization of Piezo2 revealed

expression in mouse DRG neurons [10]. Soon after, the

channel was determined to be involved in vertebrate

touch response in vivo in zebrafish. Knocking down

piezo2b in zebrafish larvae leads to a loss of light touch

but not nociceptive mechanosensation due to a loss of

function in touch sensitive neurons [11]. Several studies

performed since by the Patapoutian group established

Piezo2 as the main channel to transduce touch response in

mammals as well. Merkel cells, which are important for
www.sciencedirect.com
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Sensory feedback circuits in the spinal cord. Peripheral sensory information is carried by dorsal root ganglion (DRG) neurons and provides

excitatory input either directly to motor neurons (MNs) or to the spinal interneuron (IN) network. External inputs include the sensation of

temperature, pain, itch and chemical irritants as well as mechanical touch. Internal peripheral sensation comes from mechansosensitive inputs

from muscle spindles and Golgi tendon organ (GTO). Inside the spinal cord, inhibitory feedback from cerebrospinal fluid-contacting neurons (CSF-

cNs) carry information about the bending of the spinal cord as well as pH and osmolarity of the cerebrospinal fluid (CSF). The IN network

integrates peripheral and intraspinal sensory inputs as well as supras pinal commands and provides patterned inhibition and excitation that

ultimately lead to rhythmic MN activation.
light touch sensation in mammals [12,13], rely on Piezo2

to be touch sensitive [14]. In addition to Merkel cells,

Piezo2 is also necessary in Ab fibers which are relaying the

light touch response from Merkel cells to the spinal cord.

This dual role is likely the reason why only mice lacking

Piezo2 in both Merkel cells and Ab fibers show strong

deficits in their touch response [15�]. Functionally rele-

vant Piezo2 in Merkel cells and Ab fibers suggests a two-

receptor site model for light touch where Piezo2 in

Merkel cells is responsible for the static phase and Piezo2

in Ab fibers is responsible for the dynamic phase of the

response [15�]. Interestingly, similar to the observations

made in zebrafish, mechanosensation in nociceptive

C-fibers remained unchanged in the Piezo2 conditional

knockout mice (Piezo2CKO), indicating that another yet

unidentified channel is responsible for noxious mechani-

cal stimuli.

In addition to mediating light touch response, Piezo2 is

also the main mechanosensitive channel underlying pro-

prioception, both in muscle spindles and Golgi tendon

organs (GTO) [16��]. In response to mechanical stimula-

tion, parvalbumin-positive (PV+) proprioceptive neurons

[6,7] lose their predominant rapidly adapting mechanical

response in Piezo2CKO while the less common interme-

diately adapting currents remained [16��]. Consequently

PV+ Piezo2CKO DRGs are unresponsive to muscle stretch

and Piezo2CKO mice have marked limb coordination
www.sciencedirect.com 
deficits [16��]. It should be mentioned that some of the

rare touch sensitive neurons were not explicitly tested in

Piezo2CKO mice, leaving the possibility of Piezo2 inde-

pendent mechanosensitive neurons. Also, in neither of

these studies, eliminating Piezo2 abolished all mechani-

cally-activated currents [15�,17]. These observations sug-

gest that there are probably additional channels

mediating mechanosensation. Furthermore, Piezo2 likely

acts in concert with other molecular partners to tune its

response in different cell types [18]. Nonetheless, during

the last few years Piezo2 emerged as the main channel

underlying mechanosensation in DRG neurons.

To what extend proprioceptive feedback contributes to

locomotion has long been a debate in the spinal cord field

[19]. Recently Akay et al. addressed this question in a

mutant mouse model that lacks muscle spindle [20��].
Mice lacking functional muscle spindle showed specific

impairments in the timing of ankle flexor activity. Inter-

estingly, this impairment was much more severe during

swimming where proprioceptive feedback from GTO

plays less of a role as the gravitational load is reduced.

These results indicate that muscle spindles and GTO

provide both distinct and redundant feedback when

regulating muscle activity.

Proprioceptive feedback from muscle spindle and GTO

is not the only source of sensory input shaping limb
Current Opinion in Neurobiology 2016, 41:38–43
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movement. Recent work also highlighted the importance

of cutaneous feedback in grasping and locomotion

[21,22�]. Retinoid-related orphan receptor (ROR) alpha

positive interneurons were shown to receive inputs from

both light touch responsive afferents and corticospinal

pathways, likely integrating touch sensation and cortical

commands [22�]. Ablation of ROR alpha reduced the light

touch response, while overall motor behavior stayed

unchanged. However, corrective paw placement notably

deteriorated, indicating the importance of cutaneous

feedback for corrective movements. Similarly Bui et al.
[21] showed another interneuron type, dl3, to contribute

to grasping. These interneurons receive low threshold

mechanosensitive inputs and their ablation reduces grasp

strength while leaving general motor function intact. This

and previous work [23,24] highlights the diversity of

sensory interneurons and further studies will likely reveal

the function and circuitry of additional classes.

In terms of network dynamics, peripheral proprioceptive

feedback originating from muscle activation provides

glutamatergic input to sensory interneurons, which can

indirectly lead to muscle activation. Such excitatory feed-

back loops are intrinsically prone to oscillation [25].

Presynaptic inhibition of sensory afferents has been

shown to function as a gain control system to prevent

these oscillations to occur [26�]. Altogether this recent

body of work adds to the evidence that proprioceptive

feedback strongly shapes locomotion [20��,26�,27].

Intraspinal GABAergic sensory neurons
Since the description of spinal reflexes by Sir Charles

Sherrington, mechanosensory feedback was classically

thought to originate solely from peripheral sensory affer-

ents projecting to the dorsal spinal cord. Recently, cere-

brospinal-fluid contacting neurons (CSF-cNs) have been

identified as intraspinal GABAergic sensory neurons in

the ventral spinal cord. Even though initially described

nearly a century ago in over vertebrate 200 species

[28,29], the function of CSF-cNs is still poorly under-

stood. Searching for the sour taste receptor in the mouse

tongue, Huang et al. first described the expression of the

TRP channel PKD2L1 in spinal CSF-cNs [30]. Recent

detailed molecular characterization established CSF-cNs

as coexpressing GABA and PKD2L1 in the spinal cord of

zebrafish, mouse and monkey [31�,32]. CSF-cNs origi-

nate from two distinct progenitor domains in both mouse

and zebrafish, suggesting functionally different subpopu-

lations [33�,34–36].

Based on the observation that PKD2L1 is specific to pH

sensitive taste cells in the mouse tongue [37], Huang et al.
showed increased firing rates when subjecting PKD2L1

expressing CSF-cNs to low pH in vitro [30]. More de-

tailed pharmacological analysis in the mouse dorso-vagal

complex and the lamprey spinal cord led to the conclusion

that acidification actually inhibits PKD2L1 and likely
Current Opinion in Neurobiology 2016, 41:38–43 
activates ASIC channels [38,39��]. This is in accordance

with later studies showing that CSF-cNs do not exhibit a

proton current after acidification and activation by low pH

is most likely due to ASICs [40]. PKD2L1 is instead

activated by alkalization as well as hypo-osmotic shocks

[38]. Recent work showed that PKD2L1 likely acts as a

spike generator in CSF-cNs and that there is a bimodal

response of CSF-cNs [41]. This study and following work

in lamprey [42], suggests that firing is increased by

alkalization through the activation of PKD2L1 and by

acidification through the activation of ASIC channels.

The initial in vitro studies showed that CSF-cNs are

sensitive to changes of pH and osmolarity. Recent work

identified mechanosensitive function of CSF-cNs in vitro
[39��] and in vivo [43��]. In the lamprey spinal cord, CSF-

cNs show mechanically-evoked firing [39��], suggesting

these cells may respond to CSF flow. However, from the

in vitro studies in mouse and lamprey the relevance of this

sensory response for behavior remains unclear. In zebra-

fish larvae, we showed that CSF-cNs are not recruited

during fictive locomotion when muscle contraction does

not occur [43��]. In contrast, CSF-cNs respond to passive

spinal cord bending as well as active muscle contraction.

As CSF-cN activation is selective to the side of contrac-

tion, the mechanisms by which CSF flow activate CSF-

cNs asymmetrically are unclear. Optogenetic stimulation

of CSF-cNs in zebrafish indicated that these cells can

modulate the occurrence and duration of locomotion by

connecting to ventro-lateral premotor glutamatergic

interneurons [44,45�]. Furthermore, impairing sensory

function or vesicular release in CSF-cNs resulted in a

decreased tail-beat frequency [43��] in freely-swimming

zebrafish larvae, indicating that this mechanosensory

feedback shapes active locomotion. In mammals, the

connectivity and physiological relevance of intraspinal

CSF-cNs remain to be investigated.

Conclusion and perspectives
By combining genetics, viral tracing and calcium imaging,

the work discussed above reveals how genetically identi-

fied sensory pathways feedback onto microcircuits in the

spinal cord and shape motor output. Segregated sensory

feedback from DRGs is integrated by different subtypes

of interneurons, which form an overlapping network to

generate the segregated output underlying muscle acti-

vation [46,47].

Although the different types of sensory afferents reaching

the spinal cord have been known for a long time, the

investigation of intraspinal GABAergic sensory cells and

their corresponding sensory stimuli will likely add com-

plexity to the picture. Changes in pH could be an impor-

tant signal for spinal cord circuits but to what extend pH

varies in the CSF has not yet been extensively measured

under physiological conditions. Mechanical feedback

from spinal bending can provide important information
www.sciencedirect.com
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during locomotion in aquatic animals such as zebrafish

and lamprey. However, to what extend spinal bending

happens in mouse spinal cord and whether activation of

CSF-cNs plays a role in quadruped locomotion remains to

be investigated.

Over the recent years, proprioceptive feedback emerged

as a focus of research in the field of spinal cord injury.

Significant efforts are put into promoting axonal regener-

ation across the lesion to regain lost drive to spinal

circuits. Yet, it has long been recognized that simple

training can improve locomotor deficits after spinal cord

lesion [48]. This observation has led to the use of epidural

stimulation to activate sensory motor reflex circuits to

provide the necessary excitation to initiate locomotion in

cats and rats [49,50]. These initial findings were followed

by epidural stimulations combined with locomotor train-

ing in patients with spinal cord injury [51–53]. Improve-

ments to this method were recently achieved in rats by

using epidural stimulation in a closed loop system where

the stimulation protocol was adapted to the leg position

in real time [54�] and optimized with computational

modeling [55].

As promising as these results are, epidural stimulation

remains a relatively crude method and the underlying

mechanisms are poorly understood. Continuing efforts in

understanding the role of sensory feedback and signal

processing in the spinal cord will not only advance our

basic understanding of spinal microcircuit computation

but should have very direct effects in the treatment of

human spinal cord injury in the future.
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