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ABSTRACT: Zebrafish became a model of choice

for neurobiology because of the transparency of its brain

and because of its amenability to genetic manipulation. In

particular, at early stages of development the intact larva

is an ideal system to apply optical techniques for deep

imaging in the nervous system, as well as genetically

encoded tools for targeting subsets of neurons and moni-

toring and manipulating their activity. For these applica-

tions, new genetically encoded optical tools, fluorescent

sensors, and light-gated channels have been generated,

creating the field of \optogenetics." It is now possible to

monitor and control neuronal activity with minimal per-

turbation and unprecedented spatio-temporal resolution.

We describe here the main achievements that have

occurred in the last decade in imaging and manipulating

neuronal activity in intact zebrafish larvae. We provide

also examples of functional dissection of neuronal circuits

achieved with the applications of these techniques in the

visual and locomotor systems. ' 2011 Wiley Periodicals, Inc.

Develop Neurobiol 72: 404–414, 2012
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neural circuits

INTRODUCTION

The zebrafish model has entered the field of neurobi-

ology with the great promise to be amenable to

genetic manipulations and optically accessible at

larval stages for in vivo imaging studies. In addition,

due to its small size all neurons from a defined circuit

can be monitored at once under a laser scanning

microscope. For instance, in the visual motor

response pathway, it is possible to monitor neurons

from every layer of processing while visually stimu-

lating the animal, including the retina (Dreosti et al.,
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2009), the tectum (Ramdya et al., 2006; Ramdya and

Engert, 2008; Sumbre et al., 2008; Del Bene et al.,

2010), and the hindbrain (Orger et al., 2008). Defined

neuronal subpopulations can be easily targeted using

specific promoters (Higashijima et al., 2000) or trans-

genic lines derived from gene trap or enhancer trap

screens (Davison et al., 2007; Scott et al., 2007;

Asakawa et al., 2008; Ogura et al., 2009; Scott and

Baier, 2009). The physiology of neurons from diverse

anatomical regions can be recorded in patch clamp in

the living animal (Saint-Amant and Drapeau, 2001;

McLean et al., 2007). Finally, the larvae display ro-

bust behaviors amenable to functional and genetic

dissection (Gerlai, 2010).

The application of optogenetics to zebrafish neuro-

biology has also enabled for the first time to function-

ally test the role of identified neurons in behaviors.

The optogenetic revolution has allowed neuroscient-

ists to silence and to activate neuronal circuits while

observing the neuronal activity or the behavior of live

animals (Zhang et al., 2007a; Luo et al., 2008). Light-

gated channels and pumps allow the activation and

silencing of neurons, and they are referred as \opto-
genetic actuators." Fluorescent proteins have been

engineered to sense calcium or membrane potential

and we will refer to them as \optogenetic sensors."
This review presents an updated view of the recent

application of actuators and sensors in zebrafish neu-

ronal circuits (Table 1).

CONTROLLING NEURONAL ACTIVITY
WITH LIGHT

Currently, two major classes of optogenetic actuators

exist: (i) microbial opsins (Ebnet et al., 1999; Nagel

et al., 2003; Boyden et al., 2005; Zhang et al., 2007b,

2008; Chow et al., 2010), where the endogenous reti-

nal is bound to the protein core and its light-driven

isomerization controls gating of the ion channel or

ion pump; (ii) engineered neuronal receptors/chan-

nels tethered to a chemical photoswitch, where photo-

isomerization controls the gating of the ion channel

(Banghart et al., 2004; Trauner and Kramer, 2004;

Kramer et al., 2005; Chambers et al., 2006; Volgraf

et al., 2006; Gorostiza and Isacoff, 2007; Gorostiza

et al., 2007; Szobota et al., 2007; Fortin et al., 2008;

Gorostiza and Isacoff, 2008b; Isacoff and Smith,

2009; Kramer et al., 2009).

Microbial-like opsins are a class of proteins identi-

fied in multiple organisms including in unicellular

algae where they mediate phototaxis or photophobic

behavior (Beckmann and Hegemann, 1991; Dein-

inger et al., 1995; Hegemann, 1997; Holland et al.,

1997; Braun and Hegemann, 1999; Ebnet et al., 1999;

Ehlenbeck et al., 2002; Nagel et al., 2003; Kateriya

et al., 2004; Nagel et al., 2005b). The best known of

these proteins is undoubtedly channelrhodopsin-2

(ChR2), originally isolated from the green algae

Chlamydomonas reinhardti (Nagel et al., 2003).

ChR2 is a blue light-sensitive cationic channel that

Table 1 Optogenetic Tools Successfully Applied in Zebrafish

Application in Zebrafish References

Optogenetic actuators

ChR2 and

ChR2-H134R

Activation of somatosensory and hindbrain

neurons

(Douglass et al., 2008; Arrenberg et al., 2009;

Zhu et al., 2009; Schoonheim et al., 2010)

eNpHR Silencing of hindbrain neurons (Arrenberg et al., 2009; Schoonheim et al.,

2010)

LiGluR Activation of spinal cord neurons (Szobota et al., 2007; Wyart et al., 2009)

Optogenetics sensors

YC2.1 Detection of Ca2+ influx in spinal cord neurons (Higashijima et al., 2003)

IP Detection of Ca2+ influx in olfactory bulb

neurons

(Li et al., 2005a,b)

GCaMP1.6 Detection of Ca2+ influx in neurons of the optic

tectum neuropil

(Sumbre et al., 2008; Del Bene et al., 2010)

GCaMP3 Detection of Ca2+ influx in neurons of the optic

tectum

(Del Bene et al., 2010)

GCaMP-HS Detection of Ca2+ influx in spinal cord neurons (Muto et al., 2011)

SyGCaMP2 Detection of Ca2+ influx in presynaptic terminals

of tectal neurons ad retina bipolar cells

(Dreosti et al., 2009)

(GFP)-Aequorin Non-immaging detection of Ca2+ influx in HCRT

neurons and in pan-neuronal transgenic line

(Naumann et al., 2010)

Mermaid Detection of transmembrane potential changes in

heart muscle cells

(Tsutsui et al., 2010)
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opens when illuminated with the proper light (peak

absorbance *460 nm) of even relatively low inten-

sity (on the order of 1 mW/mm2), leading to cell

depolarization. ChR2 is able to operate in the milli-

second time-scale allowing a temporally precise con-

trol of neuronal activity reaching spiking rates of

approximately 40 Hz in neurons (Boyden et al., 2005;

Li et al., 2005b; Deisseroth et al., 2006; Zhang et al.,

2006; Airan et al., 2007; Arenkiel et al., 2007; Gradi-

naru et al., 2007; Zhang et al., 2007a,b; Schneider

et al., 2008; Gradinaru et al., 2009). Due to its rela-

tively low conductance it requires a high level of

expression to efficiently activate in vertebrate neu-

rons. To overcome this limitation, a mutated form of

ChR2 has been engineered to increase its conduct-

ance introducing the single point mutation H134R

(Nagel et al., 2005a). ChR2, like other microbic

opsins, uses all-trans retinal as chromophore, there-

fore it does not need the addition of any exogenous

chemicals in vertebrate cells, where retinal is nor-

mally present at sufficiently high concentrations. To

visualize ChR2 expression in vivo, fusion variants

with fluorescent proteins are normally used. In zebra-

fish ChR2 has first been used in transient expression

experiments driving its expression in somatosensory

neurons mediating escape response (Rohon Beard

and trigeminal neurons) (Douglass et al., 2008). Spe-

cific cell targeting was achieved using the isl1
enhancer sequence (Higashijima et al., 2000) and

high levels of expression were achieved using the

UAS/Gal4 bipartite system (Asakawa and Kawakami,

2008; Halpern et al., 2008; Scott, 2009). The analysis

of the responses to photoactivation of 24 h post fertil-

ization transgenic larvae confirmed that isl1 positive

somatosensory neurons triggered escape responses

(Douglass et al., 2008). Coupling electrophysiology

recording of trigeminal neurons with ChR2 activa-

tion, the authors demonstrate that in larval zebrafish

somatosensory neurons show extremely low levels of

spontaneous activity. In fact, single spikes in single

trigeminal or Rohon Beard neurons can result in

escape responses and drive action potentials in the

hindbrain target Mauthner cells.

More recently, cell-specific, temporally controlled,

and high-level expression of ChR2 has been achieved

in zebrafish using viral gene delivery and the iTet-Off

system (Zhu et al., 2009). The use of the bipartite

iTetOff system in particular seems quite promising

because it offers an alternative to the more widely

applied UAS/Gal4 expression system, for which

many transgenic lines are available (Davison et al.,

2007; Scott et al., 2007; Asakawa and Kawakami,

2008; Ogura et al., 2009; Scott and Baier, 2009).

Combining the two systems in the same animal offers

the exciting possibility to express different transgenes

in two separate and genetically defined neuronal pop-

ulations. Moreover, the Tet system can be modulated

temporally by doxycycline administration. Similar to

the UAS/Gal4 system, this approach has the tendency

to create transgenic lines showing expression in dis-

tinct, sparse, and stable populations of neurons that

appeared to be subsets of the neurons targeted by the

promoter driving the Tet-activator (Zhu et al., 2009).

This is probably due to epigenetic silencing mecha-

nisms (Goll et al., 2009; Akitake et al., 2011). Never-

theless, this property can also be used to create more

discrete expression patterns that may reveal novel

neuronal circuits. Using this rationale and the virtu-

ally pan-neuronal promoter HuC (Park et al., 2000),

transgenic lines with sparse transgene expression

have been generated (Zhu et al., 2009). In one of

these lines, ChR2 expression and activation with low

intensity blue light induced backward swimming.

This behavior is never observed during spontaneous

swimming and it will be of great interest to dissect

the neuronal circuit that is responsible for it.

Microbial opsins provided neurobiologists with

optogenetic tools that are also able to hyperpolarize

membrane potential and therefore silence neurons.

The first of these tools was the chloride pump halor-

hodopsin derived from the halobacterium Nathomo-
nas pharaonis (NpHR) (Hegemann et al., 1985;

Oesterhelt et al., 1985). NpHR when activated by

green/yellow light (peak absorbance *570 nm)

moves chloride ions inside the cell, hyperpolarizing

the neurons, and inhibiting spiking. Since the original

NpHR has been observed to poorly translocate to the

plasma membrane, leading to toxic intracellular

aggregates, an improved version with enhanced mem-

brane localization has been developed (eNpHR)

(Zhao et al., 2008). In zebrafish, eNpHR has been

used to efficiently suppress neuronal activity in vivo
and, because of the different light activation wave-

length, the combination of NpHR silencing with

ChR2-mediated excitation has been achieved in the

same animal (Arrenberg et al., 2009). Using this ver-

satile system a small region of the caudal hindbrain,

just rostral to the commissura infima Halleri, was

identified to be sufficient to initiate a locomotor com-

mand. In this work, high spatial resolution was

achieved using fine optical fibers to deliver light to

very restricted neuronal populations. Taking advant-

age of the rebound neuronal activity observed in neu-

rons after prolonged eNpHR silencing, it has been

possible to dissect the kinetics of this rebound

induced swimming response that occurs in less than

300 ms from the light offset. Most of the latency of

this response is due to an intra-hindbrain circuitry ac-
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tivity, while spinal circuits and muscle respond very

fast to descending inputs.

Recent work, using a similar combination of ChR2

and NpHR co-expression, and optic fiber light stimu-

lation, has made it possible to identify in the zebrafish

hindbrain the location of the neurons that, when acti-

vated, are sufficient for the generation of eye sac-

cades (Schoonheim et al., 2010). The observed

latency between ChR2 activation and initial eye

movement was 28 ms only. No other behavior was

observed, such as tail movements or escapes, con-

firming the specificity of the induced response. This

group of neurons located in rhombomere 5 has been

proposed to be the burst generator present in the

larval zebrafish and playing an analogous function to

the saccadic burst generator engaged during free

viewing in primates (Scudder et al., 2002). In this

study, ChR2 has been also used for the first time to

rescue a behavioral phenotype in the zebrafish mutant

didy (Schoonheim et al., 2010). In these larvae, a

mutation in the voltage-gated sodium channel

NaV1.1lb causes a selective defect in the sustenance

of saccadic eye movements while other behaviors

appear normal. This phenotype was rescued by opti-

cal stimulation of ChR2 expressing burst-generating

neurons in the hindbrain. It is likely that the sodium

currents added by activated ChR2 depolarized the

affected neurons and thus helped them surpass the fir-

ing threshold in the absence of functional NaV1.1lb.

The remaining endogenous voltage-gated sodium

channels were then most likely sufficient to carry the

subsequent spikes.

In parallel to the generation of optogenetic tools

derived by intrinsically light sensitive proteins, an

alternative approach to achieve optical control of

neuronal activity has been developed. This approach

lies in genetically engineering existing target

proteins, channels or receptors, and binding them in
vivo to an exogenous chemical photoswitch (Kramer

et al., 2005; Gorostiza and Isacoff, 2007; Fortin

et al., 2008; Gorostiza and Isacoff, 2008a; Isacoff

and Smith, 2009; Kramer et al., 2009). The core of

the used phostoswitch consists of an azobenzene

functional group that isomerizes when illuminated

with UV and green light. A maleiamide group at one

end of the chemical photoswitch reacts with the

target protein binding to an introduced cystein. At

the other end of the chemical group, a ligand can

function either as an agonist or an antagonist of the

protein. UV and green light induces photoisomeriza-

tion of the azobenzene group to the cis and trans
conformations, respectively. This, in turn, results in

the movement of ligand back and forth controlling

the protein function.

Using this approach, the light-gated glutamate re-

ceptor LiGluR was obtained, mutating the glutamate

receptor iGluR6 through the addition of a single cys-

teine near the binding site of glutamate. When this

cysteine was bound in vivo to the photoswitch MAG

(Maleamide Azobenzene Glutamate), the ion cannel

could be rapidly opened and closed with UV and

green light pulses, leading to fast and precise control

of neuronal firing (Szobota et al., 2007). LiGluR was

the first type of these \chemical optogenetic" tools to

be used in zebrafish where the in situ labeling of the

genetically engineered protein with MAG is achieved

by simple bath application in the 5-day-old larvae

(Szobota et al., 2007). LiGluR was used in zebrafish

to analyze motor behavior and to identify the neuro-

nal type in the spinal cord that is sufficient to induce

swing behavior (Wyart et al., 2009). Using a novel

approach named \intersectional optogenetic" several

Gal4 lines were used to express LiGluR in specific

spinal cord neurons and the motor behavior output

following their activation was tested. This approach

led to the identification of a specific group of cerebro-

spinal fluid contacting neurons that are the spinal

input to the central pattern generator (CPG) underly-

ing spontaneous locomotion (see Fig. 1). These neu-

rons were identified as the GABAergic ipsilateral

ascending Kolmer Agduhr (KA) cells. The KA-

evoked swim was distinct from the asymmetric

touch-escape response, which could be induced by

photo-stimulation of sensory Rohon-Beard cells with

LiGluR. In larval zebrafish, when GABAergic trans-

mission is excitatory (Brustein et al., 2003), KA

neurons are necessary for the normal frequency of

spontaneous swimming and seem sufficient to drive

the CPG.

MONITORING NEURONAL AND
SYNAPTIC ACTIVITY WITH LIGHT

Neuronal activity can be monitored in vivo through

the indirect flux of Ca2+ through the membrane lead-

ing to an increase in Ca2+ concentration (Denk et al.,

1996; Yasuda et al., 2004). The groups of Tsien

(Baird et al., 1999; Miyawaki et al., 1999), Myazaki

(Nagai et al., 2001), Looger (Tian et al., 2009), Nakai

(Nakai et al., 2001; Ohkura et al., 2005), and others

have generated a large number of genetically encoded

indicators with diverse excitation and emission spec-

tra, Ca2+ affinity, kinetics of association and dissocia-

tion, fluorescent intensity or wavelength ratiometric

readout, and cell permeability (Paredes et al., 2008).

Genetically encoded calcium indicators (GECIs)

can be targeted to specific, genetically defined cell
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types or targeted to particular subcellular regions

(Miyawaki et al., 1997). GECIs consist of engineered

fluorescent proteins that are intrinsically capable of

varying their emission properties according to the

[Ca2+] in their environment (Barth, 2007; Garaschuk

et al., 2007; Kotlikoff, 2007; Hires et al., 2008; Mank

and Griesbeck, 2008; Wilms and Hausser, 2009).

GECIs include both single fluorescent proteins, typi-

cally consisting of circularly permutated fluorescent

proteins whose fluorescence properties are modified

in response to Ca2+ binding to Ca2+ recognition ele-

ments (Baird et al., 1999; Nagai et al., 2001; Nakai

et al., 2001) and fluorescent protein pairs that mediate

Förster resonance energy transfer (FRET) where con-

formational changes driven by Ca2+ binding modulate

the FRET efficiency altering emission intensity

of both FRET donor and acceptor fluorophores

(Miyawaki et al., 1997). The Ca2+ binding domains

of troponin-C (TnC) (Heim and Griesbeck, 2004) and

calmodulin (CaM) (Miyawaki et al., 1997; Nakai

et al., 2001) have been used and modified to optimize

the conformational changed induced by Ca2+ binding.

The first demonstration of the use of GECIs in

defined population comes from a study in the spinal

cord. The pioneering work of Fetcho and colleagues

demonstrated the use of GECI to detect neuronal ac-

tivity in single neuron in the living larva (Higashijima

et al., 2003). They used the FRET based calcium sen-

sor yellow cameleon 2.1 (YC2.1) (Miyawaki et al.,

1999) to measure activity in spinal cord neurons of

larvae by confocal microscopy. Cameleon is a hybrid

protein in which cyan fluorescent protein (CFP) and

yellow fluorescent protein (YFP) are linked by cal-

modulin and an M13 calmodulin-binding domain. In

response to an increase in calcium concentration,

calmodulin binds calcium and interacts with M13.

The conformational change of the protein increases

the efficiency of fluorescence resonance energy trans-

fer from CFP to YFP. Therefore, on CFP excitation,

an increase in calcium concentration causes an

increase in the YFP/CFP fluorescence intensity ratio.

Cameleon can therefore be used as a ratiometric cal-

cium indicator. The YC2.1 protein was expressed

transiently or in a stable manner in the cytoplasm

using the general neuronal promoter Islet-1 targeting

Rohon-Beard neurons (Higashijima et al. 2000) or

the a-tubulin promoter to target motoneurons and

interneurons (Higashijima, 2003). Electrical stimula-

tion and touch-escape responses elicited spikes in

Rohon Beard sensory neurons, primary motoneurons,

and CiD interneurons in the spinal cord (Higashijima

et al., 2003). Due to the ratiometric response of the

YC2.1 indicator, small motion artifacts were minimal

in a first approximation and the authors could image

neuronal activity during an escape response in par-

tially restrained animals. In Rohon-Beard neurons,

electrical stimulation that elicited a single spike could

be detected by YC2.1. This study was the first proof

of principle of the targeted expression and use of

GECIs for detecting neuronal activity in zebrafish lar-

vae. Due to the small signals that cameleon proteins

show in vivo compared to their in vitro performance,

later studies in zebrafish have focused on the use of

other sensors: the inverse pericam (IP) (Nagai et al.,

2001), GCaMP1.6 (Ohkura et al., 2005), and

GCaMP2 (Tallini et al., 2006), which are single-

wavelength indicators lacking the benefits of ratio-

metric approaches.

The group of Rainer Friedrich studying neuronal

circuits underlying olfaction used IP under the HuC

Figure 1 Schematic of the locomotor functions probed using optogenetics in the zebrafish larva

central nervous system. A nucleus controlling eye saccade generation was identified in rhombomere

5 using ChR2 stimulation (Schoonheim et al., 2010). A nucleus generating burst swimming was iden-

tified in a small region of the caudal hindbrain, rostral to the commissural infima Halleri (Arrenberg
et al., 2009). The escape behavior was triggered by single Rohon Beard cell activation (Douglass

et al., 2008). Remote activation of Kolmer-Agduhr cells lead to a slow swim response (Wyart et al.,

2009). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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promoter to detect [Ca2+] variations in olfactory bulb

neurons in intact larvae from 2–6 days post fertiliza-

tion, as well as in the dissected adult olfactory bulb in

response to odor stimulation (Li et al., 2005b). In

contrast to IP, YC2.1 failed at showing signal varia-

tion under similar conditions. Given that both sensors

were expressed under the same pan-neuronal pro-

moter, the authors hypothesize that IP possesses a

dynamic range better matching the [Ca2+] variations

normally occurring in olfactory bulb neurons (Li

et al., 2005a,b).

Regarding the functional dissection of the visual

pathways, neuronal activity of retinal ganglion cells

has been monitored using GCaMP1.6 (Sumbre et al.,

2008; Del Bene et al., 2010). Recently in the group of

Herwig Baier, a study further dissected the circuits of

the optic tectum, the primary retino-recipient brain

region in non-mammalian vertebrates. As in its mam-

malian counterpart, the superior colliculus, the vast

majority of tectal neurons are maximally responsive

to stimuli that are smaller than their receptive fields

and exhibit smaller responses to larger stimuli. To

functionally identify the neural substrate of this spa-

tial selectivity, Baier and colleagues monitored visu-

ally-evoked neural activity in genetically defined sub-

populations of tectal neurons in zebrafish larvae (Del

Bene et al., 2010). Imaging of calcium responses in

the neuropil region of the tectum with targeted

expression of the sensor GCaMP1.6 revealed that

large visual stimuli evoke calcium responses that are

largely restricted to the superficial layers of the tec-

tum, whereas small visual stimuli additionally recruit

deeper layers of the tectal neuropil. This study used a

promising new sensor GCaMP3, the latest member of

the GCaMP family of calcium sensors (Tian et al.,

2009). It has been reported to show increased base-

line fluorescence, three-fold greater dynamic range

and higher affinity for calcium. GCaMP3 performed

better than any other GECIs tested in pyramidal cell

dendrites and was capable of detecting a single action

potential (Tian et al., 2009). While single projection

neurons expressing transiently GCaMP3 under the

dlx5/6 promoter responded exclusively to small mov-

ing stimuli, a class of inhibitory GABAergic inter-

neurons located superficially in the tectal neuropil

responded maximally to large stimuli. These neurons

are selectively responsive to large visual stimuli. The

confined localization of activity to superficial layers

of the tectum for a wide stimulus relies on the

recruitment of these cells, since their pharmacologi-

cal silencing or selective ablation results in a loss of

this confinement (Del Bene et al., 2010). Together,

these findings identify a novel feed-forward inhibi-

tion module operating within the tectum to achieve

visual information selectivity (Nevin et al., 2010)

(see Fig. 2).

The fusion of to the presynaptic protein synapto-

physin to the GCaMP2 protein enabled the group of

Lagnado to monitor presynaptic terminals activity

in vivo (Tallini et al., 2006; Dreosti et al., 2009). The

resulting reporter localized to presynaptic terminals,

enabling their visualization in vivo and it had a linear

Figure 2 Model of the tectal micro-circuit for size selectivity (Del Bene et al., 2010). A: Small

visual stimuli (spots or moving bars) induce robust responses in periventricular interneurons includ-

ing bi-stratified periventricular interneurons (bsPVIN) and periventricular projector neurons

(PVPN). B) Presentation of a large stimulus activates a large number of retinal inputs, which leads

to activation of the superficial inhibitory neurons (SIN). As a consequence of this inhibitory trans-

mission, the periventricular neurons are not responding. SO, stratum opticum; SFGS, stratum fibro-

sum et griseum superficiale; SGS, stratum griseum centrale; SAC, stratum album centrale; SPV,

stratum periventriculare. In green is indicated the location of the retinal afferent axons. Black

(arrows and neurons) indicates active neuronal pathways, while gray color indicates silent ones.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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response over a wide range of spiking frequencies

because of the specific localization of the GCaMP2

protein optimized to sense brief calcium transient in

the presynaptic compartment rather than changes in

the bulk calcium concentration in the cytoplasm. The

fusion was expressed in both tectal neurons and in

retina bipolar cells, recording activity from the spik-

ing neurons of the optic tectum and the activity pat-

terns across dozens of ribbon synapses in the retina

bipolar cells that display a graded voltage signal. In a

follow-up study, an interesting, semi-automated

method was devised to identify synapses automati-

cally, extract dynamic signals, and assess the tempo-

ral and spatial relationships between active units, and

was validated on retinal bipolar cells in transgenic

larvae (Dorostkar et al., 2010). Recently, Akira Muto

in the groups of Nakai and Kawakami observed cal-

cium transients at early stages of development in CaP

motoneurons using a novel sensor named GCaMP-

HS in vivo (Muto et al., 2011).

A complementary way to monitor intracellular

[Ca2+] variations and neuronal activity has been

recently developed and successfully applied in zebra-

fish using bioluminescent signal recording in freely

behaving animals (Naumann et al., 2010). This method

does not require incident light and does not provide any

spatial information on the emitted light signal, but it

relies on the specific genetic targeting of defined neuro-

nal populations. Neuronal activity is instead detected as

bioluminescent signal emitted by transgenic animals

whose neurons express the Ca2+-sensitive photoprotein

(GFP)-Aequorin (Baubet et al., 2000). Aequorin has no

basal activity at resting [Ca2+], while emits photon

when [Ca2+] increase as result of neuronal activity. To

emit photons upon binding calcium, this protein needs

to oxidize a chemical substrate (provided externally in

the zebrafish preparation) known as coelenterazine

(CLZN). Freely swimming transgenic zebrafish larvae

expressing (GFP)-Aequorin can be monitored in non-

imaging assays for neuronal activity using large area

photomultiplier in a light-proof enclosure. Using this

set up, neuronal activity has been recorded in trans-

genic animals expressing (GFP)-Aequorin in most neu-

rons over many days. This activity was correlated with

locomotor behaviors like spontaneous swimming or

startle response to mechanical tap (Naumann et al.,

2010). Furthermore in this study, the authors expressed

(GFP)-Aequorin in a small group of hypocretin-posi-

tive (HCRT) neurons of the hypothalamus that have

been shown to control arousal in mammals and fish

(Prober et al., 2006; Sakurai, 2007; Yokogawa et al.,

2007). In these transgenic larvae HCRT neuronal activ-

ity was shown to be specifically associated with periods

of consolidated locomotor activity, consistent with the

hypothesis that HCRT promotes wakefulness and

inhibits rest in zebrafish larvae (Prober et al., 2006).

This technique was also showed to be sensitive enough

to detect activity from a single (GFP)-Aequorin

expressing neuron in transient transgenic animals and,

with a stroboscopic illumination and with a gated pho-

tomultiplier detector, it could be adapted to record visu-

ally evoked behaviors (Naumann et al., 2010).

Since variation in [Ca2+] remains an indirect way

to assess neuronal function, another line of research

aims to improve genetically encoded membrane

potential sensors (Baker et al., 2008; Siegel and Isac-

off, 2010). Recently new improved FRET-based volt-

age sensor were described (Tsutsui et al., 2008) based

on the voltage sensing domain of the Ciona intestina-
lis voltage-containing phosphatase (Ci-VSP) (Murata

et al., 2005). These sensors display up to 30% change

in emission ratio per 100 mV in cultured neuronal

cells. Their fast on–off kinetics allows the recording

of spikes comparable to action potentials with appre-

ciable changes (2–7%) in emission ratio. One of these

voltage sensors, named Mermaid, has been used in

zebrafish to monitor voltage changes in the develop-

ing heart (Tsutsui et al., 2010). These sensors used in

mouse brain preparations (Akemann et al., 2010) are

highly promising in the intact zebrafish larval brain.

A Bright Future Ahead

It is clear from these few examples how the applica-

tion of optogenetics to zebrafish offers great promises

for the future. New tools are developed at high speed

and many of them wait to be applied in zebrafish. For

instance, a mutation in site C128 of ChR2 has gener-

ated a bi-stable forms of this protein (Berndt et al.,

2009; Schoenenberger et al., 2009; Stehfest et al.,

2010) that convert a brief pulse of light into a stable

step in membrane potential due to their extended

open time. These forms retain precise temporal con-

trol and can be tightly controlled with pulses of light

of different wavelength (Berndt et al., 2009). More-

over another microbial opsin, VChR1, with similar

characteristics to ChR2 but red shifted excitation

wavelength, has been identified in the colonial green

alga Volvox carteri (Ebnet et al., 1999; Zhang et al.,

2008). The different excitation spectra of VChR1 and

ChR2 offer the possibility to combine these tools in

the same animal and to control different cell types

with different light wavelengths. Improvements in the

kinetic control of Chr2 have also been made. New

forms optimized for fast kinetics were generated by

fusing different parts of ChR2 and ChR1 to create the

light gated channels named \ChIEF" and \ChEF"
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(Lin et al., 2009). These variants show reduced inacti-

vation upon prolonged stimulation compared to

ChR2 and improves the kinetics of the channel by

enhancing the rate of channel closure after stimula-

tion allowing for a more precise temporal control of

neuronal stimulation. In addition, an ultra-fast variant

introducing the point mutation in the site E123T of

ChR2 has also been published. This variant with

faster off kinetics, termed \ChETA" (from ChR2-

E123T accelerated), enables reliable firing up to 200

Hz in mammalian neurons (Gunaydin et al., 2010).

In the field of optogenetic tools for inhibit

neuronal activity, novel microbial opsins, Arch from

Halorubrum sodomense and Mac from Leptosphaeria
maculans, have been reported (Chow et al., 2010).

These proteins act as protonic pumps hyperpolarizat-

ing the plasma membrane by an efflux of H+ ions.

These proton pumps show larger currents under lower

light power (<10 mW/mm2, green-yellow for Arch

and blue-green for Mac) and fast recovery following

light-dependent inactivation than NpHR. Further-

more, Arch spontaneously recovers from light-

dependent inactivation, unlike NpHR that enter

long-lasting inactive states in response to light. pH

changes created by these protonic pumps are well tol-

erated by neurons probably because they are mini-

mized by self-limiting mechanisms providing for a

safe and naturalistic form of neural silencing.

Perhaps, among the \chemical optogenetics" tools

developed for neurosciences, the most innovative

developments will be observed in the future. So far

the groups of Ehud Isacoff, Richard Kramer, and Dirk

Trauner have engineered light-gated glutamate recep-

tors (LiGluR) and potassium channels (Banghart

et al., 2004; Chambers et al., 2006; Fortin et al., 2008;

Janovjak et al., 2010). A similar engineering strategy

can be extended to a wide variety of target proteins

including ionotropic and metabotropic neurotransmit-

ter receptors, allowing the dissection of specific path-

way mediated by the different receptor forms. The

major advantages of this approach are that these mem-

brane proteins are normally expressed in neurons,

with optimal targeting to the plasma membrane.

Moreover, ionotropic typical neurotransmitter recep-

tors have a conductance much larger than microbial

opsins. Since we have accumulated vast structural and

biochemical knowledge about these membrane pro-

teins, it is possible to optimize light-gated forms for

their permeability to ions, voltage dependence,

kinetics, and affinity for endogenous ligands. The

major drawback of applying this approach in vivo is

the efficient labeling of the engineered protein in situ
with the exogenous photoswitch. However, in zebra-

fish larvae the application of photoswitches can be

easily achieved due to their high permeability to small

molecules as shown by the LiGluR example (Szobota

et al., 2007; Wyart et al., 2009).

Authors would like to thank Allison Bardin for inputs

on the manuscript. Authors apologize their colleagues

whose work they could not cite for space limitations.
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