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The zebrafish larva stands out as an emergent model organism for translational studies
involving gene or drug screening thanks to its size, genetics, and permeability. At the
larval stage, locomotion occurs in short episodes punctuated by periods of rest. Although
phenotyping behavior is a key component of large-scale screens, it has not yet been
automated in this model system. We developed ZebraZoom, a program to automatically
track larvae and identify maneuvers for many animals performing discrete movements.
Our program detects each episodic movement and extracts large-scale statistics on motor
patterns to produce a quantification of the locomotor repertoire. We used ZebraZoom to
identify motor defects induced by a glycinergic receptor antagonist. The analysis of the
blind mutant atoh7 revealed small locomotor defects associated with the mutation. Using
multiclass supervised machine learning, ZebraZoom categorized all episodes of movement
for each larva into one of three possible maneuvers: slow forward swim, routine turn, and
escape. ZebraZoom reached 91% accuracy for categorization of stereotypical maneuvers
that four independent experimenters unanimously identified. For all maneuvers in the data
set, ZebraZoom agreed with four experimenters in 73.2–82.5% of cases. We modeled
the series of maneuvers performed by larvae as Markov chains and observed that
larvae often repeated the same maneuvers within a group. When analyzing subsequent
maneuvers performed by different larvae, we found that larva–larva interactions occurred
as series of escapes. Overall, ZebraZoom reached the level of precision found in
manual analysis but accomplished tasks in a high-throughput format necessary for large
screens.
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A central question in systems neuroscience is how neural cir-
cuit assembly and function relate to animal behavior. Genetic
screens in invertebrate models, such as Drosophila melanogaster
and Caenorhabditis elegans have begun to unravel the genetic
basis of circuit function and behavior (Chalfie et al., 1985; Moore
et al., 1998; Scholz et al., 2000). Automated methods have recently
been developed in these species to track the position of individ-
uals alone or in a group (Branson et al., 2009; Swierczek et al.,
2011) and to categorize behavior (Dankert et al., 2009; Kabra
et al., 2013). The zebrafish has emerged as an important verte-
brate model organism for developmental biology, neurobiology,
and human disease models, and is now used as a genetic model
organism for the study of the mechanisms modulating complex
behaviors in vertebrates such as depression and anxiety (Blaser
et al., 2010; Lee et al., 2010; Cachat et al., 2011; Vermoesen et al.,
2011; Zakhary et al., 2011; Ziv et al., 2013), sleep (Zhdanova et al.,
2001; Appelbaum et al., 2009), or addiction (Petzold et al., 2009;
Khor et al., 2011). The permeability, small size, genetic tractabil-
ity, transparency, and low cost of zebrafish make them highly
suitable for large-scale genetic and chemical screens (Driever

et al., 1996; Granato et al., 1996; Haffter and Nusslein-Volhard,
1996).

Although simple for a vertebrate, the locomotor patterns of the
zebrafish larva bring technical challenges to automated analysis.
Larvae spontaneously swim in discrete bouts in a manner often
described as “beat and glide,” which can be classified as individual
maneuvers, including slow forward swim, routine turn, or escape.
These short movements are characterized by a large range of tail-
beat frequencies (15–100 Hz), which require high-speed imaging
to capture accurately and can be separated by long resting peri-
ods of up to a few seconds. Manual tracking via frame-by-frame
analysis has formed the basis of contemporary knowledge and
has enabled initial characterization of the larval zebrafish loco-
motor repertoire (Budick and O’Malley, 2000; Borla et al., 2002;
McElligott and O’Malley, 2005). However, manual techniques are
both laborious and limited in scope for high-throughput screens
(Driever et al., 1996; Granato et al., 1996; Haffter and Nusslein-
Volhard, 1996). The currently available automated tools have
limitations in either refinement or time-scale. Recent chemical or
genetic screens have relied on commercial software that estimates
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an index of mobility of the larvae, usually measured as the dis-
tance traveled during a recording session or the amount of time
spent moving (Rihel et al., 2010; Elbaz et al., 2012; Rihel and
Schier, 2012). These approaches for high-throughput screens pro-
vide information about average velocity and distance traveled
by tracking the animals’ center-of-mass over minutes to hours.
Previous studies have either focused on analyzing movement
duration and speed at low frequency over long periods of time or
on fine analysis of kinematics at high frequency but for very short
acquisition (typically 1000 ms, Burgess and Granato, 2007; Liu
et al., 2012). Accurate categorization of maneuvers for each indi-
vidual in a group requires novel methods to record behavior with
high temporal resolution and over long durations, automatically
tracking and categorizing thousands of maneuvers.

Here we developed a new program, ZebraZoom, to track the
full body position over a multiple-minute timescale of 56 larvae
simultaneously recorded at high frequency and to finely charac-
terize each maneuver. To identify core and tail positions for large
datasets, videos were obtained on multiple larvae simultaneously
over long periods of time and at high resolution using a high-
speed camera run in a streaming-to-disk interface (Methods).
Typically 500–1000 movements from seven larvae were recorded
per dish in four minutes and eight dishes were monitored in par-
allel. To simplify tracking, we placed larvae in conditions that
reduced overlapping in the z-plane during swimming (Methods;
overlaps occurred on average once every 145 s per larva). We
developed an offline 2D tracking method for identifying and
separating each animal even when in close contact (Methods,

Figure 1). For each larva several features were identified, a core
position that included the head and swim bladder (Figure 1A)
and ten points along the tail (Methods and Figure 1B; Video S1).
As movements occurred as discrete episodes, ZebraZoom
detected movements based on the tail-bending angle over time
(Methods and Figures 1C–D). To validate the accuracy of move-
ment detection, one trained experimenter manually identified all
movements occurring in a subset of videos. In three videos rep-
resenting a total of 189 events, movements occurred with a false
negative rate of 2.7% and a false positive rate of 3.7%.

To quantify movements in a consistent manner, we used the
location of the head, the position of the tail, the heading direction
and the tail-bending angle to estimate global parameters of loco-
motion (Figure 2A, Methods). We observed that movements for
5–7 dpf wild-type (WT) larvae occurred every 2.22 s on average
per larva (at 0.4495 ± 0.0117 Hz). For all movements identified,
larvae performed on average 3.19 ± 0.01 oscillations per move-
ment, had a 24.29 ± 0.03 Hz tail-beat frequency (TBF), lasting
189.5 ± 0.0004 ms with a 51.14 ± 0.18◦ heading direction range,
2.49 ± 0.008 mm traveled distance and 13.35 ± 0.04 mm/s speed
per maneuver. We illustrated the use of ZebraZoom for quanti-
fying the effects of a known glycinergic receptor antagonist, and
for analyzing a blind genetic mutant. Glycine is responsible for
reciprocal inhibition in the spinal cord that permits left-right
alternation to sustain oscillations (Dale, 1985; Grillner et al.,
1995; Granato et al., 1996; Drapeau et al., 2002; Li et al., 2004).
In zebrafish, mutants for glycinergic receptors or transporters
have been associated with defects in motor pattern generation

FIGURE 1 | Image processing for tracking of larvae’s core positions and

larvae’s tail and detection of movements based on the tail-bending

angle. (A) Tracking of the larvae’s core positions. (Ai) Initial image.
(Aii) Background image. (Aiii) Image with background subtracted.
(Aiv) Binary image. (Av) Eroded image. (Avi) For each larva, identification
of the core (blue dot) and heading direction (red axis). (B). Identifying the
tip of the tail. (Bi) The head center is located at the boundary of the head
and trunk. Candidate Point 1–4 along the tail are the four points of the

contour with the smallest x-value, smallest y-value, largest x-value, and
largest y-value caudal to reference points 1 and 2. (Bii) The two distances
d1 and d2 shown for candidate point 1. (Biii) The two vectors used to
identify the tail tip defined with the minimal scalar product for candidate
point 1. (C) Definition of the tail-bending angle (α) separating the body axis
(pink) and the line connecting the core and the tip of the tail (green).
(D) Example of the tail-bending angle over time with detection of
movements indicated by the pink line.
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FIGURE 2 | Global parameters describing locomotion in wild-type,

mutant, or drug-treated larvae. (A) Distribution of global parameters
of movements for 5–7 dpf WT larvae. From left to right: Number of
oscillations per movement, TBF in Hz across all movements, duration
of each movement in ms, heading direction range in degrees,
distance traveled per movement in mm, speed in mm/s during each
movement (eight videos, 420 larvae, six clutches, 5–7 dpf, 44,688
movements). All values were calculated per movement. (B) Effect of

the glycinergic receptor antagonist strychnine on the global parameters
of movements. White circles are before application, gray are after
application (two videos, 42 larvae for each condition, two clutches,
6–7 dpf, 10,459 movements). (C) Effect of the atoh7 mutation on the
global parameters characterizing movements (four videos, 112 mutants
atoh7−/− , and 112 control siblings, four clutches, 6 dpf). For (B,C):
error bars are standard errors of the mean and statistics were
calculated per larva.

(Granato et al., 1996; Odenthal et al., 1996; Hirata et al., 2005;
Masino and Fetcho, 2005). We measured the effect of bath appli-
cation of 75 μM strychnine on spontaneous locomotor activity
in larvae and compared to control siblings that were not exposed
to the drug (Figure 2B, Methods). For control larvae, we did not
observe a significant change in the occurrence of movements over
time (0.35 ± 0.05 movements per larva/s before and 0.27 ± 0.03
movements per larva/s after), or on any of the global param-
eters (Figure 2B; all p > 0.15). However the locomotor behav-
ior of larvae treated with strychnine was significantly impacted
(Figure 2B). Overall, movements occurred less frequently (0.30
± 0.04 Hz before and 0.12 ± 0.02 Hz after, p < 0.0002). Although
the average TBF during a movement did not change (p > 0.81),
the number of oscillations decreased (3.52 ± 0.17 before and 2.89
± 0.16 after; p < 0.0078), an effect that was associated with a

decrease in movement duration (p < 0.0001), distance traveled
(p < 10−5), and average speed (p < 10−5). Strychnine applica-
tion also resulted in a decrease in the range of heading direction
(p < 10−5). atoh7 mutant larva lack retinal ganglion cells, ren-
dering them blind (atoh7−/−, Kay et al., 2001). Considering
the importance of vision for zebrafish larvae, analyzing their
locomotor output could reveal corresponding behavioral differ-
ences. Overall atoh7−/− mutants generated episodic movements
less frequently than control siblings (0.33 ± 0.02 Hz vs. 0.51 ±
0.02 Hz, 112 larvae for each condition). Quantitative analysis of
global parameters of the blind mutants showed no difference
in the average TBF or the average speed per larva (Figure 2C;
p > 0.85 and p > 0.83, respectively) but there were small but sig-
nificant decreases in the number of oscillations, duration, heading
direction range, and distance traveled (Figure 2C; all p < 10−3).
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These defects were observed systematically in four clutches.
atoh7−/− mutants thus display small but substantial differences
in basic motor behavior when compared to control siblings.

Zebrafish larvae display a variety of locomotor maneuvers that
are often grouped into discrete categories. In these experimental
conditions, three types of movement occur in groups of larvae
at early stages: slow forward swims (S), routine turns (T, also
referred to as slow turns), and escapes (E, including C-turns
or burst swims). Figure 3 shows examples of these movements
reported by ZebraZoom. For each maneuver, we superimposed
a succession of images (Figures 3Ai–Ci), the tail-bending angle
over time (Figures 3Aii–Cii) and the curvature along the rostro-
caudal axis and as a function of time (Figures 3Aiii–Ciii). The
three types of maneuvers included a series of slow left-right alter-
nation; high values of curvature were confined to the caudal
tail (Figures 3Aiii–Ciii). While high values of curvature of the
tail were confined to the caudal end for slow forward swims
(Figure 3Aiii), high values of curvature were distributed from
head to tail for routine turns and escapes (Figures 3Biii,Ciii).
Stereotypical routine turns and escapes differed by the frequency
of left-right alternation in the tail bend (Figures 3Biii,Ciii). As
larvae did not always exhibit a canonical slow forward swim,
routine turn or escape, some movements were ambiguous. To
estimate the percentage of these movements, four experimenters
subjectively classified 390 movements distributed over eight

videos. Overall about 82% of all movements were classified uni-
formly by at least three out of four experimenters (Methods)
indicating that 18% of movements were difficult to categorize.

Using knowledge of stereotypical locomotor events, we
designed a multiclass categorization approach with supervised
machine learning to automatically sort each movement into one
of the three categories. To implement the multiclass categoriza-
tion, we used two successive support vector machine (SVM)
classifiers: the first classifier sorted S vs. all other maneuvers, and
when necessary the second classifier sorted T vs. E. Locomotor
events were segregated subjectively in the training set (n = 201).
This machine learning approach relied on associating dynamic
parameters extracted from the tail-bending angle over time with
each maneuver type identified in the training set (Figure 4A
and Methods). To reduce the dimensionality of the data, we

Table 1 | Estimation of ZebraZoom categorizing accuracy based on

the different reference experimenters.

All movements (%) S (%) T (%) E (%)

Experimenter #1 82.5 85 82 79

Experimenter #2 73.2 85 60 53

Experimenter #3 74.3 73 80 58

Experimenter #4 75.4 79 77 47

FIGURE 3 | Typical maneuvers occurring in groups of 5–6 dpf larvae.

(A) Slow forward swim (S). (B) Routine turn (T). (C) Escape response
(E). (Ai–Ci) Superimposed images taken every 17 ms. (Aii–Cii) The

tail-bending angle over time for each maneuver. (Aiii–Ciii) Plots of the
curvature of the tail as a function of time and position along the rostro-caudal
body axis.
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performed Principal Component Analysis (PCA). Based on the
selection of a trained experimenter on the learning set, we val-
idated the multiclass categorization to sort maneuvers by com-
parison with the subjective classification performed by a trained
experimenter for a recognition set (n = 189; Figures 4B,C). We
observed that ZebraZoom agreed with the trained experimenter
82.5% of the time for the recognition dataset (85% for S, 82%
for T, and 79% for E; Figures 4B,C; Table 1 and Methods).
When compared to four independent experimenters, ZebraZoom
reached 91% accuracy for categorization of stereotypical maneu-
vers that all experimenters had unanimously identified and
76.4% on average for all maneuvers (73.2–82.5%, Table 1).
Once validated, we applied the ZebraZoom categorization algo-
rithm on a large dataset of 44,688 movements of WT larvae
(Figure 4D). We identified 14.911 S (33.36%), 21,432 T (49.96%),
and 8,345 E (18.67%). The distribution of global parameters for
the three classes of maneuvers were similar in terms of num-
ber of oscillations and duration, but they differed in terms of
mean TBF, heading direction range, distance traveled and speed
(Figure 4D).

The investigation of interactions between individuals lead-
ing to coordinated motion in animal groups has been a long-
standing challenge that is central to elucidating the mecha-
nisms and evolution of collective behavior. Most studies have
focused on the analysis of speed or directionality to reflect the
interaction between animals (Katz et al., 2011; Gautrais et al.,
2012). We availed ourselves of ZebraZoom’s features to accu-
rately identify each larva and categorize their maneuvers to
study how larvae interacted. In comparison to juvenile and adult
zebrafish that swim continuously, larval zebrafish swim episod-
ically with maneuvers that occur in a beat-and-glide manner.
Each movement can be regarded as a discrete event, therefore
we were motivated to explore how local perturbations of a sin-
gle individual could impact the group. The program switched
identity of larvae once every 109 s (once every 49 movements
on average), allowing us to track single larvae. We modeled
sequences of maneuvers performed by larvae within a group as
Markov chains. Utilizing the classifier, we described larva–larva
interactions in a group and intrinsic properties of individu-
als. We calculated a transition index (I) for each sequence of
two maneuvers as the transition probability between first and
second maneuvers divided by the probability of random occur-
rence of the second maneuver (Figure 5; Table 2 and Methods).
When the two successive maneuvers were the same, a higher
transition index indicated the probability of repetition of this
maneuver was greater than chance. The transition index was
equal to one when the order of sequential maneuvers was ran-
dom. Overall I was greater than one for repetition of the
same maneuvers (Table 2). We sorted the data into interactions
between different animals and the repetition within the same
animal. We analyzed how the transition index for a given suc-
cession of maneuvers depended on the distance between the
two larvae’s core positions at the onset of the movement and
the time between the onset of each movement (Figure 5 and
Methods). Individual larvae often performed the same type
of maneuver sequentially (maximal values IS max (same) = 1.43,
IT max (same) = 1.37, IE (same) = 2.38, all p < 0.002; Figure 5A,

Table 2, and Methods). Although slow forward swims or rou-
tine turns were not frequently repeated between larvae (I close
to 1: maximal values IS (diff) = 1.09 and IT (diff) = 1.01, p >

0.05; Figures 5Bi,ii, Table 2, and Methods), we found that recur-
rent escapes were very frequent between different larvae (max-
imal value IE (diff) = 3.6, p < 0.002; Figure 5Biii, Table 2, and
Methods). Five to seven dpf larvae do not show evidence for
social interactions (Buske and Gerlai, 2011). By taking advan-
tage of the algorithm for identifying single larva and categorizing
simple maneuvers, we reveal that larva–larva interactions pri-
marily occurred for escape responses. These series of escapes
occurred after direct collisions (in one third of the cases) or via
long distance interaction (two third of cases). Blind atoh7−/−
larvae showed a similar profile of interactions for escapes (data
not shown); these interactions were most likely mechanically
triggered.

Large-scale chemical and genetic screens would benefit from
a quantitative approach to analyze fine locomotor patterns
over long periods of time. Compared to other genetic models,
zebrafish locomotion is difficult to analyze because larvae initi-
ate maneuvers intermittently and during these short events, the
larvae swim at a high speed with TBFs ranging from 15–100 Hz.
The quantitative analysis of motor behavior for large-scale screens
requires solving the problem of recording multiple animals simul-
taneously at high frequency (above 200 Hz) and for long periods
of time (minutes). Here we implemented a reliable method for
quantifying global parameters of movements based on stream-to-
disk recordings acquired at high frequency and over long periods
of time, limited only by data storage. Next we developed a robust
method for tracking the full body position of zebrafish larvae
swimming in groups. We first manually validated that the track-
ing accurately detected discrete movements, and then used the
global parameters obtained to characterize the locomotion of
WT larvae. Quantification of the global parameters describing
larval movements corroborates previous observations based on
fewer samples (Budick and O’Malley, 2000; Danos and Lauder,
2007; Liu et al., 2012). Similar estimates of the duration of
movements, distance traveled and speed were obtained from the
recent application of C-trax (designed originally for Drosophila)
to zebrafish larvae [Lambert et al. (2012) based on Branson
et al. (2009)]. In these conditions, recordings at low frequency
over long periods of time, typically 60 Hz for minutes or hours,
revealed the global level of activity over time but no informa-
tion on fine kinematics during individual maneuvers (Elbaz et al.,
2012). When recordings were performed at high frequency to cap-
ture the dynamics of motion, they usually lasted 1000 ms (Burgess
and Granato, 2007).

We illustrated the benefit of ZebraZoom to quantify global
parameters of movements by analyzing the effect of a drug to
block glycinergic neurotransmission, which has been known to
be involved in motor pattern generation and alternation between
the left and right side of the spinal cord across vertebrate species
(Grillner, 2003; Korn and Faber, 2005; Nishimaru and Kakizaki,
2009). Most studies relied on ventral nerve root recordings where
muscles were dissected out or paralyzed in order to record the
activity of motor neurons at the level of a few segments at
most. Our automated quantification of locomotor events enabled
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FIGURE 4 | Validation of the automated categorization of maneuvers:

slow forward swim (S), routine turn (T) and escape (E). (A) Dynamic
parameters used for categorizing the different maneuvers: amplitude of
tail-bending angle (TBA) in degrees, integrated TBA in degrees, TBF in Hz,
and speed in mm/s. The mean of each parameter for each time bin is shown
and error bars are standard error of the mean: S in pink, T in green and E in
blue. Time 0 is taken at the peak of the first bend of the movement.
(B,C) Comparison of the results of the automatic categorization from

ZebraZoom with the subjective categorization by a trained experimenter on
189 movements from one video. The comparison of the categorization is
shown overall (B) and for each maneuver (C: Ci for S, Cii for T, Ciii for E). The
proportion of movements categorized the same way by both methods is
shown in addition to the proportion of movements miscategorized and how
they were categorized. (D) Distribution of global parameters for each
maneuver S, T, and E of WT larvae (same color code as in A; 44,688
movements total from eight videos, six clutches).
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FIGURE 5 | Larva–larva interactions occurred most frequently as

sequences of escapes. Transition index for the same larvae (A) and
for different larvae (B). Time is plotted in seconds from the time of
initiation of the first movement. Distance is plotted from the core

position of the larva at the beginning of a movement. (Ai,Bi) The
sequence S–S. (Aii,Bii) The sequence T–T. (Aiii,Biii) The sequence
E–E (36,068 total movements from five videos, 280 WT larvae, four
clutches, 5–6 dpf).

Table 2 | Transition index for sequence of two maneuvers estimated

as the probability of transition from maneuver 1 to maneuver 2

divided by the occurrence of the maneuver 2.

S T E

INTERACTIONS BETWEEN DIFFERENT ANIMALS

S 1.0498 1.0152 0.8481

T 1.0087 1.0413 0.8606

E 0.8549 0.8493 1.7528

REPETITIONS WITHIN THE SAME ANIMAL

S 1.2162 0.8947 0.8413

T 0.9091 1.1185 0.8499

E 0.8263 0.8887 1.6995

identification of effects induced by bath application of the glycin-
ergic antagonist strychnine on locomotion in intact animals. As
predicted, bath application of strychnine dramatically reduced
the occurrence of movements and the number of oscillations per
movement, that was correlated with a reduction of the dura-
tion of movement and of the distance traveled. While mean TBF
was not affected, we observed a reduction in the heading direc-
tion range and in speed. Our approach pinpointed effects of
glycinergic blockade, including a reduction in the number of
oscillations per movement, a kinematic feature not estimated in
commercially available software. The analysis of the mutant atoh7
revealed that although TBF and speed were not affected in the
blind mutant, there was a small but significant decrease in the
number of oscillations, heading direction range, distance, and
duration of each bout compared to their control siblings. These
effects were systematically observed on four clutches suggesting
that visual feedback may impact some global parameters of loco-
motion. However since the pattern of expression of atoh7 has not

yet been fully characterized, it cannot be excluded that the gene
may be expressed in cells other than retinal ganglion cells.

The originality of ZebraZoom lies in categorizing all maneu-
vers performed by individual larvae in a group. The subjective
analysis of maneuvers based on four independent experimenters
revealed that locomotor maneuvers were not obvious to catego-
rize. Based on subjective estimates, 18% of all movements corre-
sponded to ambiguous maneuvers. By using a machine-learning
paradigm, we trained ZebraZoom to categorize all maneuvers
over tens of thousands of movements with 82.5% accuracy, a sim-
ilar value to the 72% agreement rate of all four experimenters
measured over a few hundreds of movements. The approach we
developed here could be expanded to include directionality of the
turns, sequences of maneuvers such as those occurring during
prey tracking, and subcategories of escapes.

This study constitutes an important first step for accurate
tracking of multiple larvae in groups over long periods of time
and for categorizing maneuvers. Some improvements could be
implemented in the future. While our tracking method currently
relies on a simple “blob” approach solely based on raw image
analysis, a model-based approach may be more reliable in partic-
ular when animals are in close contact (Fontaine et al., 2008). We
show here that ZebraZoom can achieve an accurate categoriza-
tion of maneuvers, comparable to experimenters’ estimates, based
solely on the dynamics of movement of head and tail. An interest-
ing avenue of exploration to address this could be investigation
of novel dynamic parameters for the learning and recognition
process of the classifier to yield subtler methods for detection of
defects. Quantification of motor patterns in C. elegans is based
on a description of all possible positions of the animal over
time (Stephens et al., 2008). In order to fully understand larval
zebrafish behavior we need to identify a minimal set of param-
eters sufficient to describe all motor patterns. All together this
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work brings new insight to the complexity of behavior determi-
nation in zebrafish larvae and could be applied to investigation of
the mechanisms of addiction, arousal, feeding, social interaction
and aggression in larvae and juveniles (Gahtan et al., 2005; Bianco
et al., 2011; Buske and Gerlai, 2011; Miller and Gerlai, 2012; Ziv
et al., 2013). The observation of complex interactions in juve-
niles raises the hope that it will soon be possible to investigate the
neuronal circuits and molecular pathways underlying social inter-
actions. The fact that we can track individual larva and analyze
their interactions is a major advance over existing methods. Our
approach that systematically quantifies and categorizes thousands
of motor patterns was designed to bring efficiency and reliability
to drug screening and forward genetic screens. ZebraZoom can
detect, quantify, and categorize movements to provide a quan-
titative description of global parameters as well as a qualitative
description of all maneuvers performed by individual larvae.

METHODS
ZEBRAFISH HUSBANDRY
All experiments were performed on Danio rerio larvae between 5
and 7 dpf. AB and TL strains of WT larvae were obtained from
our laboratory stock of adults. Embryos and larvae were raised
in an incubator at 28.5◦C under a 14/10 light/dark cycle (lights
on, 8:00 A.M.; lights off, 10:00 P.M.) until the start of behavioral
recordings. The mutant line for atoh7 (Kay et al., 2001) was given
by Dr. Herwig Baier, MPI Munich. Double recessive atoh7−/−
mutants were identified at 5 dpf by their dark pigmentation. All
procedures were approved by the Institutional Ethics Committee
at the Research Center of the Institut du Cerveau et de la Moelle
épinière (CRICM).

BEHAVIORAL RECORDINGS
Motor behavior of 56 larvae split into eight dishes (seven
larvae per dish, Figure 1Ai) on a homogeneous illumi-
nation plate (light intensity 0.78 mW/cm2, Phlox, ref.
LEDW-BL-200/200-LLUB-Q-1R24) in egg water (http://zfin.
org/zf_info/zfbook/chapt1/1.3.html, methylene blue added at
0.5 ppm). Following acclimation, larvae were recorded for 4 min
at 337 Hz with a high-speed camera (VC-2MC-M340E0-C,
CMOS chip 2048 × 1088 pixels, Vieworks, South Korea) placed
above the setup and coupled to a camera objective (AF Nikkor
50 mm f/1.8D, Nikon, Japan). Pixel size was 66 μm. We developed
a direct-to-disk high-speed imaging system designed for long
acquisitions of raw images in collaboration with R&D Vision,
France. Behavioral recordings were performed between 2:00
and 5:00 P.M. Larvae were acclimated for 60 minutes on the
light source at room temperature (21–22◦C) and kept at room
temperature during all recordings. Larvae were kept in dishes
with an inner diameter of 2.2 cm and an outer diameter of 3.5 cm
(Figure 1A). Water was kept at a low level (2 mm) in order to
reduce the occurrence of crossings between larvae. Typically
500–1000 movements were recorded in each 4-min session for
each well.

ZEBRAZOOM TRACKING ALGORITHM
The first step is to track the core and then the tail for all lar-
vae over time. Written in C++ using the openCV library, the

program identified the center position and heading direction of
each larva (Figures 1Ai–vi). The algorithm used a Hough trans-
form to identify the eight wells. For each well the background
was estimated as the maximum pixel value over all frames of the
video recording (Figure 1Aii) and then subtracted for all frames
for that well (Figure 1Aiii). The resulting image was converted
to binary (Figure 1Aiv). An erosion filter was applied twice in a
row with a 3 by 3 structuring element (Figure 1Av). The “core” of
the larva referred to the resulting connected components that had
an appropriate area (between 0.0871 and 0.8712 mm2). The core
of the larva included the head and the trunk with swim bladder
(Figure 1Avi). The algorithm identified the head center position
as the center of mass of the putative cores for each larva in a frame.
To follow each larva across subsequent frames, ZebraZoom used
the information from the previous two frames (core position and
speed) to predict the position of the larva and located the closest
core out of all the possible cores. The heading direction for each
larva was calculated simultaneously using the moments of the
eroded body (up to the second order, see red lines in Figure 1Avi).

For each larva with an identified core, we determined the “full
body” referring to the connected component of the binary image
in Figure 1Aiv. In order to track the tail, the full body was rotated
so that the head axis was parallel to the y-axis, always in the same
orientation. To identify the contour of the tail in the coordinate
system defined by the head axis, a series of points was extracted
from the full body by using the algorithm of Suzuki and Abe
(1985), (white dots in Figures 1Bi–iii). Reference point A1 was
the closest point on the contour line from the head center and
reference point A2 was the point symmetrical along the head axis
to reference point A1 on the contour. In order to identify the tip of
the tail, four candidate points on the contour were selected with
minimal and maximal x- and y-values (Figures 1Bi–iii). For the
maximal y-value the point also had to be above a given distance
away from the two reference points [below a 20% threshold for
the ratio |(d1 − d2)|/(d1 + d2), Figure 1Bii]. Distances d1 and d2
were calculated from each candidate point to the reference points
A1 and A2 along the contour (Figure 1Bii). Candidate points
with a ratio |(d1 − d2)|/(d1 + d2) over 0.25 were excluded. The
tip of the tail was then identified as the point associated with the
smallest scalar product of the tangential vectors pointing in oppo-
site directions (Figure 1Biii). The midline of the larva was defined
as the line equidistant to the contour line on the left and right side.

ERRORS IN CORE AND TAIL TRACKING
If an error occurred in the core tracking, the larva was missing
for that frame and there was no tracking of its tail. If the core of
a larva was identified, the algorithm proceeded to the tail track-
ing. To confirm that the tail tracking was correct, the algorithm
checked that the tail length was greater than 1.32 and less than
3.96 mm. If this criterion was invalid, the tail position was set
to the previous frame. This happened in 13.46% of frames on
average but was compensated by a smoothing spline on the cen-
ter positions between the left and right contour points of the tail
and a median filter applied on the tail-bending angle over time.
The tail-bending angle was defined as the angle between the axis
formed by the tip of the tail and the center of the head with respect
to the larva heading direction (Figures 1C,D).
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SEPARATING LARVAE DURING CONTACTS
Tracking was optimized to separate larvae in close vicinity to
one another or in direct contact. For core tracking, if the tra-
jectories of the two cores merged at a given time point, then
the algorithm considered that a collision occurred between the
two larvae. When the predicted positions of two larvae based on
core position and speed in the two previous frames were clos-
est to the same core, the algorithm considered that a collision
between the two larvae occurred at that frame. When a collision
was detected, the algorithm applied erosion filters in the region
of interest defined by the core until more than one isolated core
emerged. In rare cases, the multiple cores were not resolved and
the larva could not be tracked for that frame. For the tail track-
ing, if the area of the larva’s full body was greater than 1.9 mm2,
the algorithm considered that two larvae were in direct contact.
The distance separating the larvae’s cores determined which of
two algorithms was used to isolate the tails: if the distance was
less than 1.32 mm, a line separation algorithm was applied. A line
was created to separate the two larvae by optimizing the area of
the resulting tails, calculated by maximizing the sum of the two
largest areas containing a head center position. If the distance
was greater than 1.32 mm, a pixel intensity separation algorithm
was applied instead. The threshold used to convert the image
into binary was adjusted until two separate full bodies, each a
connected component, emerged and contained the head center
position. Larvae crossings occurred once every 145 s on average
per larva (0.0069 ± 0.0019 events per second) and the switching
of identification between two larvae after a collision was esti-
mated manually to occur every 109 s on average (0.0092 ± 0.0036
events per second per larva based on 720 s of recordings from four
videos, and 28 larvae).

DETECTION OF MOVEMENTS
Algorithms for the detection of movements and the behavior
analysis were written in MATLAB (The Mathworks, Inc., USA).
The detection of movement was based solely on threshold-
ing the tail-bending angle measured over time (Figures 1C,D).
ZebraZoom detected the start of a movement when the value for
the tail-bending angle at a given frame varied over 1.15◦ from
the mean value of the tail-bending angle for the ten surround-
ing frames, or 29.7 ms. To avoid separating single maneuvers
into multiple events, movements that occur within 14.8 ms of
each other were merged. To avoid false positives we considered
only movements in which the larva core had moved more than
0.099 mm and where the range of tail-bending angle values was
above 2.86 degrees. Additionally, only events during which the
eroded binary image of the larva had moved more than a set num-
ber of pixels between subsequent images were considered based
on the parameters used for the erosion. Rarely we have observed
two distinct movements occurring without a pause, such as a slow
forward swim followed by an escape due to a collision. In these
few cases when two movements occurred without a noticeable
stabilization in the tail-bending angle over time, the movements
were merged into one movement in our analysis.

Our tracking method was robust in these experimental con-
ditions. We cannot probe the impact of a reduction of contrast
or spatial resolution. All numerical thresholds used above for

tracking were fixed empirically, but they could easily be modified
for other users to adapt to other recording conditions.

CALCULATION OF THE CURVATURE
After alignment of the body axis with the y-axis in a consistent
orientation, the tail was represented parametrically in Cartesian
coordinates as [x(t), y(t)]. The midline of the tail was fitted to
the x(t), y(t) function with a spline. Curvature was calculated in
Cartesian coordinates:

c =
∣∣x′y′′ − y′x′′∣∣
(
x′2 + y′2)

(
3
2

)

where the derivatives were all calculated with respect to t, the
distance along the tail.

EXTRACTION OF GLOBAL PARAMETERS
For all frames of a video, ZebraZoom outputs variables for
each larva in each dish including: the position of its core, head
axis, midline position of its tail and tail-bending angle. For
each detected movement, a reference number for the larvae was
extracted along with the corresponding well number, start and
end time of the movement, and global parameters such as the
number of oscillations, TBF, movement duration, heading direc-
tion range referring to the range of values of the heading axis for
one movement with the heading angle reset to zero at the onset
of movement, distance traveled, average speed (distance traveled
divided by movement duration).

AUTOMATIC MULTICLASS CATEGORIZATION
We automatically attributed each movement detected in the video
to either one of the three maneuvers: slow forward swim, routine
turn or escape response. Our method relied on a dynamic set of
parameters extracted from the bending angle of the tail estimated
from the first tail bend over a limited time window (Figures 1C,
4A). We based our categorization on the four following parame-
ters: (1) the amplitude of the tail-bending angle (0–178 ms, bins
of 12 ms), (2) the instantaneous frequency (0–104 ms, bins of
7 ms), (3) the cumulative tail-bending angle calculated as the
average angle value over time (0–178 ms, bins of 12 ms), and (4)
the speed (0–240 ms, bins of 24 ms) (Figure 4A). The values of
these four dynamic parameters were interpolated with a spline
for a given time window during the movement and then used
for categorization of every movement. PCA was first performed
to reduce noise and dimensionality. Each movement was subse-
quently represented by the fourteen first principal components of
the PCA out of 53 components (representing all together about
93% of the variance), to which the total duration of the movement
was added. Multiclass categorization was implemented in two
steps: a series of two subsequent SVM classifiers with linear kernel
was applied for automatic categorization of movements: the first
SVM classifier discriminated slow forward swims vs. turns and
escapes, and if necessary a second SVM discriminated between
a routine turn and an escape. We used two distinct datasets
from WT 5–7 dpf larvae, one for learning the three maneuver
types (five videos, n = 201 movements) and one for testing their
recognition (three videos, n = 189 movements).
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ESTIMATING THE RECURRENCE OF MANEUVERS
Successions of maneuvers performed by larvae in a given dish
were modeled as Markov chains. Out of the nine possible
sequences of two maneuvers (S–S, S–T, S–E, T–S, T–T, T–E, E–S,
E–T, E–E), we estimated the frequency of occurrence of each
sequence. For a given movement classified as S, T, or E occurring
at a given time in one dish, we calculated the transition proba-
bility for the subsequent movement to be classified as S, T, or E.
We calculated a weighted transition index (I) for each sequence of
two sequential maneuvers as the ratio of the transition probability
from the first maneuver to the second, divided by the probability
of occurrence of the second maneuver (Table 2 for values of all
transition indexes). When I is equal to 1, the probability of repeat-
ing a maneuver is equal to the probability of random occurrence
of the maneuver (probability of random occurrence was 0.35 for
S; 0.48 for T and 0.16 for E; Table 2). Thus the index of recurrence
I was defined as:

I(B1, B2) = p(xi = B1|xi − 1 = B2)

p(xi = B1)

with B1 and B2 as two possible maneuvers (S, T, or E) and xi − 1

and xi as two successive movements. WT larvae were used to esti-
mate the transition index (36,068 movements from 280 larvae
originating from four clutches and obtained from 40 wells). To
investigate the recurrence of maneuvers as a function of time and
distance, we calculated I as a function of the distance separating
the two head centers of the larvae at the onset of their respective
movement and the time as the time interval between the onsets
of the first and second movement. I was calculated for many dif-
ferent time and distance windows. In Figure 5, we plotted these
indexes for the sequences S–S, T–T, and E–E. We first calculated
the index for the same larva (Figures 5Ai–iii) and across different
larvae (Figures 5Bi–iii).

STATISTICAL ANALYSIS
The data used for Figure 2A were based on eight videos, 420 WT
AB larvae from six different clutches between 5 and 7 dpf. All val-
ues were given as mean ± standard error of the mean (s.e.m.)
calculated per movement. For the pharmacology experiments
(Figure 2B), strychnine was bath applied at 75 μM and the data
were based on two videos of 84 WT larvae coming from two
clutches (42 for controls and 42 for strychnine) between 6 and
7 dpf. The data on atoh7−/− mutants in Figure 2C were generated
using four videos, 224 larvae total originating from four clutches
(112 atoh7−/− and 112 control siblings). All global parameters
plotted in Figures 2B,C were calculated per larva then averaged
across all larvae and means were given ± s.e.m. across all lar-
vae. Since the distributions of global parameters were not normal,
a standard non-parametric Wilcoxon rank sum test was used
in MATLAB for calculating differences between conditions with
vs. without drugs for Figure 2B and atoh7−/− vs. siblings for
Figure 2C. The data used for Figure 4D were based on 44,688
movements from eight videos, 448 larvae, six clutches and for
Figure 5 from 36,068 movements from five videos, 280 WT AB
larvae from four clutches. To test how the maximal values of
the transition index were different from random, we calculated

Imax after randomly permuting maneuvers while keeping track
of the larva identity, time, and location the same for 50 itera-
tions. For each comparison, S–S, T–T, E–E across different larvae
or within the same larva, we compared the values of Imax after
randomization to the measured value Imax using a two-sample
T-test.

DATA AND ALGORITHM SHARING
The software ZebraZoom is documented and available online
from Source Forge in the code tab (http://sourceforge.net/p/
zebrazoom/wiki/Home/). ZebraZoom requires MATLAB and
works reliably on an Ubuntu 11.04 computer with OpenCV
installed and MATLAB 7.10.
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Video S1 | ZebraZoom tracking of seven larvae in a dish. Acquisition

was performed at 300 Hz, and one out of every ten images is displayed

(every 33.3 ms).
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